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Abstract

Cantor and generalized contunuum hypotheses are shown to be possibly factually false. Two new hyper-continuum

hypotheses are posted to challenge pure mathematics and stir investigations of the abstract multispatial hyperspace,

which is important for physical applications. Unlike the Cantorian hypotheses, however, the new ones conjecture

existence of certain distinct, mixed kind of hyper-continuum that may serve as the manifold over which dual pairs

of linear vector spaces with quite unrestricted abstract operations could be effectively constructed.

� 2003 Elsevier Ltd. All rights reserved.
1. New crises in the old pure mathematics

Cardinal number ~�A of a set A is the class of all sets equipollent to A [1]. Georg Cantor used double bar to indicate two

levels of abstraction. I will use wavy bars to snub poorly handling of this concept in pure mathematics (PM). I am not

trying to bash Georg Cantor, but the postulative, art-like PM tolerated key theoretical mistakes for many millennia [2]

or centuries [3]. It virtually censored critique of its paradoxes and inconsistencies, which made some applications nearly

impossible. I am writing this paper for those who are adversely affected by the PM, which defiantly rejected corrections

and deflected almost every criticism of its often self-inflicted ‘‘wounds’’.

The double abstraction was with respect to the nature and the order of the elements of sets [4]. Natural numbers are

linearly ordered and thus one can always designate the next natural number, whose set was sometimes called �upward
directed’ [5]. Rational numbers could be ordered in several ways and because of this feature one cannot designate the

next rational number. This fact makes little qualitative difference between the natural numbers––or integers, in gen-

eral––and the rational numbers. Cantorian set theory (ST) neglected the difference, because the essence of cardinality is

the feasibility of counting numbers––or enumerate them when dealing with infinite sets. Irrational and consequently

thus also real numbers are not denumerable, however [6]. They do form dense multitude called continuum. Even though

arithmetic operations are performed on single numbers, the ST left the operational side to algebras and investigated

only properties of their sets.

PM invented abstract algebraic structures such as groups, rings, ideals and fields [7–9]. Groups are sets with an

operation defined on them. Fields featured all four arithmetic operations except for division by zero. Number fields may

correspond to scalar physical fields. Since nature was never troubled by prohibition on division by zero, I removed it [2].

I introduced fully operational bigroup, which is additive and multiplicative group at once [2]. Although ring is set with

both addition and multiplication [10,11]. I envisioned bigroup as an operational structure, a set whose operands may

contain some elements other than numbers [2]. Even though infinity is not a number [12], it can be an operand [2] just as

vector is. By dealing with operations only in terms of sets, PM’s algebras placed artificial operational restrictions on
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algebraic and geometric structures. This feature tormented even great mathematicians by making their inventions

somewhat evasive [13–17]. Although former algebraic approach to mappings of sets by means of morphisms is

important, it often mixed up abstract operations and sets.

Former algebraic approach was formally perfect, but it merely postulated existence of sets and morphisms [18]

without showing methods to construct them. The primary concern of modern algebras is not how an operation can be

performed, but whether it maps into or onto and the like abstract issues [19–23]. As important as this may be for proofs,

the nature does not really care about all that. The PM’s concerns were not constructive, even though theoretically

significant. We need thus an approach that is more relevant to operations performed in nature, which never complained

about morphisms or the allegedly impossible division by zero, as far as I can tell. Abstract sets and morphisms should be

de-emphasized as hardly operational. My decision to come up with a definite way to implement the feared division by

zero was not really arbitrary, however. It has removed a hidden paradox from number theory and an obvious absurd

from algebraic group theory. It was necessary step for full deployment of constructive, synthetic mathematics (SM) [2,3].

Problems hidden in PM implicitly affect all who use mathematics, even though we may not always be aware of their

adverse impact on our thinking. Just take a look at the paradox that emerges from the usual prescription for multi-

plication of zeros that remained uncontested for some 5000 years
0 � 0 ¼ 0 ) 0 � 1=1 ¼ 0 ) 0 � 1 ¼ 0 � 1 ) 1ð? ¼ ?Þ1 ð0aÞ
This ‘‘fact’’ was covered up by the infamous prohibition on division by zero [2]. How ingenious. If one is prohibited

from dividing by zero one could not obtain this paradox. Yet the prohibition did not really make anything right. It

silenced objections to irresponsible reasonings and prevented corrections to the PM’s flamboyant axiomatizations. The

prohibition on treating infinity as invertible counterpart to zero did not do any good either. We use infinity in calculus

for symbolic calculations of limits [24], for zero is the infinity’s twin [25], and also in projective geometry as well as in

geometric mapping of complex numbers. Therein a sphere is cast onto the plane that is tangent to it and its free

(opposite) pole in a point at infinity [26–28]. Yet infinity as an inverse to the natural zero removes the whole absurd (0a),

for we obtain [2]
0 ¼ 1=1 ) 0 � 0 ¼ 1=12 > 0 � 0 ð0bÞ
Stereographic projection of complex numbers tacitly contradicted the PM’s prescribed way to multiply zeros, yet it was

never openly challenged. The old formula for multiplication of zeros (0a) is valid only as a practical approximation, but

it is group-theoretically inadmissible in no-nonsense reasonings. The tiny distinction in formula (0b) makes profound

theoretical difference for geometries and consequently also for physical applications. This is not about multiplying

zeros, which I could not care less in practice, but it is about the conceptual, mathematical infrastructure of physics,

where we just cannot afford making logically irresponsible shortcuts.

The nature does not really operate on numbers of her choice––it operates on operands, no matter what. If it takes an

infinity and division by zero to make all abstract operations complete, so be it. Infinity could be introduced axiom-

atically [29,30]. Even logic contains veiled references to infinity [31]. Medieval thinkers considered infinity self-con-

tradictory notion, until Galilei showed that infinite set can be put into 1-to-1 correspondence with a proper subset of

itself [32]. Although Dedekind adopted this ingenious definition of infinity into the ST [33,34], it may cause severe

conceptual problems if the infinity is not quantified [2]. The definition is very suitable for processes [35] and thus some

authors prefer to define infinite set as not finite [36,37]. Yet infinity is well entrenched part of our unconscious con-

ceptual system [38]. As an inverse to zero, the operational infinity could be understood in terms of imaginary unit,

which acts as an inversion operator in algebras and geometries [3]. Instead of rejecting infinity as not a number, even

though it annihilates PM’s hidden paradoxes, we should perhaps ask ourselves what should the mathematical reality

look like, since it treats the infinity as valid operand. Since nature handles infinity graciously, then we would not really

be investigating the nature, if we reject the infinity. One may not like all the ways the nature works, but we should

comply with her modes of operations, if we want to stay in touch with the physical reality, or nature, in short.

Georg Cantor originally investigated only numbers [39], but then in much more general approach he explicitly talks

about set points in a space [40,41], identifying thus real numbers with their possible geometric representations even on a

sphere [42]. He distinguished sparse point sets of isolated points [43] from intrinsically dense point sets, which he defined

topologically [44]. He was primarily concerned with relationships between sets and its subsets [45] and declared that

linear dimensions are irrelevant to the cardinality of sets [46]. This underscored qualitative character of the concept. He

always emphasized in his papers two roles played by mathematical infinity: as an ideal (or variable) infinite, and as

actual infinite––or completely determinate infinite [47]. I shall deal with these issues elsewhere. Yet the operational side

was programmatically neglected in the emerging set theory.
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The PM tacitly maintains double standards. Algebra was out of sync with geometry for centuries [3]. Yet surprising

relationships exist between many disparate mathematical theories, notably between abstract linear forms and imaginary

number systems [48]. Philosophizing mathematicians admitted complex numbers for use because they behaved like the

real ones [49], as if the reals could set standard for more general complex tuples. The PM turned reasonings upside

down, where particulars set standards for generals. It is as if corporals issuing orders to army generals. We do not lack

ability to grasp abstract mathematical notions. The PM invented subtle ideas and discovered very sophisticated rela-

tionships. Yet its arrogant disregard for experimental evidence and suppression of objections made its achievements

unverifiable. Absurd is maintained and paradoxes concealed in the PM, while nonsense is often passed on to physics.

This is systemic problem that could and should be resolved. We should save pure mathematics from self-destruction and

prevent further contamination of physics by arbitrarily postulated notions.

The most important issue at present is reconciliation of geometries with algebras, number theories, set theory and

topologies. Formerly unexplained physical experiments and observations defy the mathematical infrastructure that the

PM created for physics. This is not really new crisis, but the old one that was supposed to be swept ‘‘under the carpet’’

by formal axiomatization, so to say. The old crisis has resurfaced again, because PM rules by decree via existential

postulates. I will deal here only with set theory just in order to prepare ground for addressing complex and hyper-

complex numbers, and especially the very abstract operational role that is played by the imaginary unit. Although the

imaginary unit is unintelligible insofar as its quantity is concerned, it was nevertheless admitted as a symbol for quite

meaningful operation [50] and because operations on it are algebraically complete [51].

Even today PM and physics sometimes oversimplify imaginary numbers as being just references to second real

dimension [52] rather than realization of the second dimension [53] that would underscore its operational as well as its

functional status. Poncelet has already proposed that the imaginary unit identifies objects which may not be repre-

sentable in the given reference frame [54], but his message has also been disregarded. The PM just cannot accept the

possibility that there may be much more to physical reality than it could properly handle, and so it continues to stick

with the age-old abstract formalism of complex numbers [55]. Complex numbers and the enhanced scope of abstract

operations that they allow us to perform could be far more sophisticated than those performed on real numbers.

Fruitful exchange of letters between Einstein and Elie Cartan began when the latter complained about German

scientists trying to ‘‘reinvent the wheel’’ [56]. This waste was due not only to some politically motivated animosities, but

also to unverifiable, a priori standards implemented in the PM. Certain abstract mathematical ideas and consequently

also some physical ones that were only semi-developed by some humble scientists, were probably far too advanced for

the PM to digest them. By the Graham’s economic law, which by the way has already been formulated by Copernicus,

that says that bad money pushes more valuable coins off the market, those lofty ideas (often misunderstood even by

their creators) were replaced by simplistic, usually arbitrarily postulated algebraic ideas. For this process to ‘‘succeed’’

the PM had to be kept at the obsolete level of debased ancient logic, however.

The mainstream PM still clings to the ancient, two-valued Aristotelian logic that is based upon three following main

principles [57]:

• law of identity of things: (A � A);
• law of excluded middle: (A _ :A) [reads: either A or not A];
• law of contradiction: :ðA ^ :A) [reads: not both A and not A];

where A is a thing, : denotes unary logical negation �not’, ^ denotes binary logical operator �and’, and _ denotes binary

logical operator �or’. The two latter laws, and especially the law of excluded middle, though true as such, often cause

inconsistencies when used at their face values. I will indicate departures from these laws. I have shown paradoxes that

may be attributed to their misuse [2,3]. Although there are methodological [58] and axiomatic [59] prescriptions on how

to keep logical consistency intact, there is no way to safely design absolutely consistent formal systems [60]. Therefore I

have devised synthetic approach to mathematics and physics [2,3] just in order to prevent abstract, formal reasonings

from spinning out of control. Synthetic mathematics requires constructions. For if one can build an abstract object,

rather than just postulate its existence, then it can actually exist.

The problem of abstract mathematical existence is relevant to physics in respect to numbers too. Hamilton could

not devise an abstract algebra of three-component numbers (‘‘tertions’’) placed in between complex numbers and

quaternions [61]. I have shown that operations on 3D vectors, which are algebraically represented as abstract 3-tuples

of numbers, may actually span two dual 3D spaces, just in order to keep algebra consistent and in sync with geome-

try [3]. Our former presumption that abstract 3-tuples can always be identified with 3D vectors, and that the latter

live inside a single 3D space is just unspoken postulate, oftentimes only dressed in an abstract axiomatic uniform.

The PM is obsolete, but its abstract conceptual framework weighs down physics. We should overhaul geometries

[3,62,63], algebras [2,3], theory of numbers and operations [2] and also the ingenious set theory (to be done in the



504 J. Czajko / Chaos, Solitons and Fractals 21 (2004) 501–512
present paper) in order to meaningfully pursue physics. At stake is huge backlog of unexplained experiments

and observations.
2. Cantorian continuum hypotheses

Currently two major formulations of continuum hypotheses are pondered. The Cantorian continuum hypothesis

(CCH) says that there are no sets of greater power than a denumerable set and of less power than the continuum, where

the continuum referred to set of real numbers and denumerable sets were identified with either natural or integer

numbers [1,64,65]. Generalized Continuum Hypothesis (GCH) is the conjecture that asserts that there are no sets whose

cardinal numbers lie between the cardinal number @0 ¼ 1 of the set of natural numbers and the cardinal number

@1 ¼ 2@0 ¼ 21 of the set of real numbers R [1]. The GCH is not inconsistent with axioms of the ST [66] and therefore it

can safely be added as an axiom to the ST, but it may seem somewhat irrelevant [67]. The ST is hardly constructible,

because it does not give operational prescription on how to actually build sets (from their elements) that could be

seamlessly operated on [67,68]. These two conjectures cannot be proved of disproved from the ST’s axiomatic base [67].

But they could be disproved on their merit or perhaps because of lack thereof. The two hypotheses are essentially

operational conjectures and thus they must adhere to relevant operational rules and procedures, by which we should

decide their status. Georg Cantor treated his continuum hypothesis in terms of sets, whose unconstructiveness breaks

their link to operations. The GCH is similarly postulative and thus also unconstructive. The GCH may be formulated

in a different way [69]. The first two Cantor alephs appear much like the natural numbers zero and one [70].

I will show in what follows that the CCH and GCH are false. By denying the hypotheses one could open up the door

to future non-Cantorian abstract set theories [71]. There are several mathematical, logical and even physical reasons for

that. I have showed that one can operate on infinities just as on all the other numbers [2]. This act was prompted by the

need for having operationally quite unrestricted abstract number system (NS) with somehow implemented division by

zero. The reason for the implementation is that a mutispatial hyperspace has been invented [3,63] upon the abstract

principle of duality, which requires an inverse transpose for dual linear vector spaces [63], which in turn could cause

serious problems if the infamous prohibition of division by zero would still be in force. Since multispatiality of physical

reality is virtually supported by special theory of relativity [62,63], and it has produced physically meaningful predic-

tions and retrodictions that have already been confirmed in several formerly unexplained experiments [72] as well as

strongly suggested in several others [73–76], I was quite sure that the nature was never really afraid of division by zero.

To fully understand these issues, however, one would need new, synthetic approach to such structures. Mathematical

topics of great importance to physics were handled by former PM in too abstract terms, hardly relevant to physical

applications [13,77], or treated in terms of postulative morphisms [78,79]. If we want to avoid paradoxes we should use

operational and synthetic methods. Mistakes and errors may always happen, but the PM needs balance checks that

could intercept logical errors or identify mistakes that may breed paradoxes.

The multispatial structure of physical reality was virtually implied by few results of Elie Cartan [80], although he did

not realize that [3,62], as well as by several mathematical and physical ideas of El Naschie. In particular, his approach to

conjugate complex time [81–86] and to infinitely-dimensional fractal Cantorian spacetime [87–103] led to recent

development of spatial structure of time flow [62,63] and consequently to discovery of nonradial potentials [72,73]. The

nonradial effects of gravity––whose presence has been confirmed in experiments and observations conducted in space

and on earth [72,74]––can generate an intrinsic gravitational repulsion [73], which could explain the observed, accel-

erated expansion of the whole universe. El Naschie superbly deals with physically meaningful fractal spacetime that is

endowed with infinite number of dimensions. Georg Cantor has already recognized that in a topological sense

dimensionality can be arbitrary large [104]. I shall show elsewhere that infinity is not something to be afraid of.

I should estimate the powers of various sets if I want to discuss them at a more exact, abstract mathematical rather

than philosophical, level. In order to comprehend them I must use infinities to count actual powers of sets to be

considered, even if this would be the last time I would ever touch infinities in my lifetime. I do not have to understand

everything about them in order to use the infinities as operands. The only thing that I must take care of is that the

abstract operations are performed unambiguously, according to group-theoretical rules devised for them. I do not need

an exact knowledge about the sets under investigation, but I must identify their operational structures. As a matter of

fact, I intend to discover most of their properties. One may be surprised to see that some truths of the Cantorian ST just

cannot withstand the scrutiny of more exact, operational estimations.

There is nothing that I want to postulate right up front. Just to estimate the powers of sets and then I could draw

some conclusions from these results that are for everyone to see and to repeat them. Operations on infinities are not

about counting infinities, but about estimations. I should not, however, reduce squared or cubed infinity to just infinity,

if such a rounding could have introduced a qualitative difference in their estimations. Instantaneous velocity and also
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infinitesimals were once ridiculed as ‘‘ghosts of departed quantities’’ [105]. Yet today, their formal representation is

reinterpreted and they play fundamental roles in calculus. Taunting infinities may be fun, but we really need them for

proper modeling of operational structures.

Truth in PM is a question of validity and consistency [106,107]. One may even say that truth is irrelevant to PM,

because it is not about anything real [108]. However, if the abstract notions of ST can be made operational, then we

should calculate or at least estimate all the values of its expressions and only after that we can talk about the truth of

certain propositions that refer to these expressions. The main problem of the ST is that it was not operational and

therefore the precise logical values of its propositions were difficult to evaluate. The other problem with the ST is that it

came up with inadmissible generalizations that are common to paradoxes discovered in mathematics [109]. Mathe-

matical abstractions should be effectively controlled.
3. Operational aspects of cardinal numbers

To fully understand the meaning of the CCH and GCH let us clean up the set-theoretical pig stall first. In order to

compare cardinals of different sets I must estimate potential counts of members of these sets. Although infinity is not a

regular number, I may use it as an abstract operand in estimations of potential counts. Let @00 denote the cardinal

number of the set of all natural numbers. Since it corresponds to the natural denumerable infinity 1 we get
@00 ¼ 1 ð1aÞ
as before. I am introducing new notation. We have the following count of representations of fractions from natural

numbers within the interval (0,1):
@01 ¼ 1 � ð1� 1Þ=2 ð1bÞ
which is qualitatively of exactly the same class as @00. Yet because we have (natural) infinity of such intervals plus

infinite count of naturals, then one can assign the whole set of rational numbers the following cardinal number:
@02 ¼ 1 � ð1þ1 � ð1� 1Þ=2Þ ¼ 13=2�12=2þ1 ð2Þ
where fractions such as 1/2, 2/4 and 3/6 are distinct representations of the same fraction. Elimination of such redundant

representations of the same value is possible, but it would not make any qualitative difference for the purpose of the

present paper. It would reduce the estimate by about 13=4, while still staying within the 13 (cubed) general range. All

redundant representations of the number one have been eliminated, however. Even though sums and products of

infinities do result in compound infinities, from the operational standpoint the resultant infinities––when seen as some

potential counts––are not quite identical to the ones operated on [2]. The common habit of rounding symbolically

infinities to the very same infinity such as 1 �1 ¼ 12 � 1 is quite appropriate in practice, but it could also derail

one’s ability to draw some subsequent conclusions. The first subscript denotes qualitative class of the aleph, whereas the

second subscript denotes the aleph’s quantitative class in this, slightly modified, new notation.

Although @02 > @01 > @00, @02 and @01 are denumerable––hence of the same qualitative class of infinity as @00.

Potential counts of rationals are higher than the potential count of natural numbers alone, but the actual process of

denumeration of their sets is only slightly different. If one would call the @00 linear sequential kind of infinity, then the

@01 can be called half-matrix kind of infinity, and so @02 would appear as a 3D half-matrix, a sort of. The set of all

rational numbers obviously has infinite, denumerable set of partitions, each of which has also denumerable infinite

span. Hence the potential count of all its elements is equal to certain function of the natural infinity, which has the same

type of cardinal number @02 as that of the natural numbers @00, even though these two cardinals are not identical. These

two sets are thus similar, because the set of rationals with @02 elements is just as denumerable as the set of natural

numbers is with only @00 elements. Cardinal numbers do refer to the potential count of elements in each particular set.

Both the natural and rational numbers can be counted linearly and they both are sparse, but their respective sets’

potential counts differ only quantitatively. Naturals are counted along straight line, whereas rationals are counted along

a waving kind of line, which makes their estimated potential count a little bit higher. The cardinal numbers @01 and @02

are just estimates. I want to see their operational structure and their approximate ranges.

The interval ð0; 1Þ, however, contains inverses of all rational numbers >1, some of which may be incommensurable

(surds [110]), as well as infinite multitude of pure irrational numbers, which are potentially infinite decimals represented

by unordered sequences of digits with possible repetitions. They cannot be reduced to any rational number. Never-

theless, the infinity of such purely irrational numbers within the interval ð0; 1Þ is of a different kind––because it is neither
linear nor half-matrix-like sort of infinity anymore. The potential count of irrational numbers can be depicted thus by
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permutations with repetitions allowed. Since digital representation of any number can be always reduced to certain

binary one, then the cardinal number of such a partition ð0; 1Þ of the irrational numbers alone is determined by:
@10 ¼ 2@00 ¼ 21 ¼ 1: ð3Þ
which equals to all linearly infinite permutations with repetitions allowed [111]. The dotted infinity 1. denotes both

irrational and real infinity [2]. Note that Georg Cantor assigned @10 to the whole set of real numbers. This was a big

mistake, which happened because he did not operate on infinities. Had he estimated @01, he could have realized that it

was mistake, although it is the Russell paradox that makes mistakes of this kind clearly visible.

Set with the cardinal number @10 is referred to as continuum, which is a dense multitude of numbers or points on a

line. The irrational infinity is thus qualitatively different. Its potential count is the same as count of all subsets in an

infinite discrete set. It sits at slightly higher level of abstraction in the hierarchy of cardinals, which are abstracts

themselves. Former ST used to postulatively attribute the cardinal number @10 to the whole set of all real numbers and

then proved that reals are as dense as the whole partition ð0; 1Þ. These two sets are of equal density, but of different

configuration. In terms of enumerative mappings, the set of reals and its partition ð0; 1Þ are uniquely mapped by

inversion. However, the partition ð0; 1Þ is double bound, while the set of all real numbers is half open (unbound). As

with the stereographic projection––the closer to zero the denser the partition becomes. The unique mapping does not

make the real partition ð0; 1Þ quite identical with all reals.

When one constructs the set of reals operationally, from partitions such as ð0; 1Þ, however, the continuum of all reals

may look slightly different. In some cases what one can see depends on how one approaches the issue. For Georg

Cantor the difference between partition ð0; 1Þ and the continuum of all reals was apparently negligible. In his time

physical world was perceived as clockwork with no fuzziness, which is common place today. The primary reason for

using infinity in our calculations is that we can compare various expressions and be able to see structural differences

between them. When spoken of at the philosophical level, such differences are not visible.

Irrationals are distinct kind of numbers and quite different from rationals. Hence the cardinal number of the par-

tition ð0; 1Þ, with rationals (and naturals included among them) and pure irrationals together is thus determined by
@11 ¼ @01 þ @10 ¼ 1 � ð1 � 1Þ=2Þ þ 21 ð4Þ
which is a superposition of the rational and irrational cardinals. Yet the fact that we deal with superposition does not

make the cardinality of the whole partition ð0; 1Þ qualitatively different than the cardinality of irrationals within the

partition. Superposition of sparse rationals does not make the density of irrationals within the partition ð0; 1Þ quali-
tatively any denser. The continuum is just sparsely peppered with rationals, as if islands scattered over an ocean.

Superposition of two distinct qualitative levels remains thus at the higher of these two qualitative levels.

Since we have infinitely many partitions like ð0; 1Þ, the cardinal number of the whole set of real numbers, or

combined partitions––as opposed to just one single partition––is different from that of all the previous cardinals, for we

got now linearly infinite multitude of all these partitions. Hence one can assign the set of all reals quite different,

composite ‘‘real’’ cardinal number
@20 ¼ @00 � @11 ¼ @00 � ð@01 þ @10Þ ¼ 1 � ð1 � ð1þ1 � ð1� 1Þ=2Þ þ 21Þ ð5Þ
that opens up new level of abstraction. Although the product @00 � @01 is does not make any qualitative change, the

product @00 � @10 does raise the level of abstraction. It is as if transition from solar system––with continuum of dust and

sparse, discrete (‘‘infinite’’) multitude of planets, meteors, comets and all the other debris––to the higher level of whole

universe with ‘‘infinitely’’ many, similar planetary systems. The cardinal number @20 is qualitatively and quantitatively

different from all the lower cardinals. Georg Cantor did miss this tiny difference because he did not bother to estimate

the cardinals. Superimposition of two distinct qualitative levels does generate qualitatively higher level. This is theo-

retically significant distinction.

From operational point of view, the irrational infinity 1. is the same as the real infinity, when it comes to repre-

senting any single irrational number. Note that each single irrational number has exactly the same representation as any

real–irrational number, but the set of reals and the partition ð0; 1Þ are not identical. From the set-theoretical point of

view, the potential counts of sets of pure irrational numbers within the partition ð0; 1Þ and of the whole set of all real

numbers are quite different. Former ST missed this point entirely, because it did not construct sets, but merely pos-

tulated them. The simplest lesson from this investigation is that valid conclusions drawn about numbers must not be

carried over onto their sets or subsets and probably vice versa.

Since former ST did not examine the difference between sets understood as mappings and constructive sets viewed as

outcome of some operations on the sets’ elements, it considered @10 as the cardinal number of the whole set of real

numbers and of the real partition ð0; 1Þ too. From strictly operational standpoint, however, sets are constructs.
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Although former ST always talked about sets of some numbers, it virtually dealt with sets of some morphisms, because

it assumed that sets are fully determined by some mappings, often as simple as a rule of selection in a procedural

mapping. The ST declared sets and then arbitrarily postulated their properties, including their cardinal numbers, and

after that it proved by derivations form some other arbitrary postulated axioms that its theorems were correct.

However, the ST actually proved that if the ST’s postulated axioms happened (by accident or a lucky guess, if you will)

to be valid, then the proof was admissible. In majority of all other cases the ST and PM only proved that they were

consistent, but not always that they were valid. Hence from postulated properties that happened to be false the PM

dutifully deduced some false relationships, which it then hailed as truths, without even being aware of their falsity,

of course.

The mix up of cardinals is thus the former ST’s ‘‘cardinal’’ fault, because it refused to admit constructive sets. Since

sets of numbers are supposed to be operational, one should construct them operationally. Although this is not the only

way to construct them, it is preferable method from the SM’s point of view. I have not created procedures for building

sets in this note, but only outlined certain operational aspects of their construction for the purpose of our discussion.

Nevertheless, one can see the difference that constructions can make. Operational constructions revealed quite unan-

ticipated properties of the abstract sets under investigation and allowed us to discover their true nature. Synthetic

operational approach reveals formerly invisible features.

The continuum of the all real numbers looks like set of sets, i.e., superset of partitions such as ð0; 1Þ. Also from this

point of view it is a different kind of abstract continuum. The top-down approach of former ST gives different results

than our bottom-up operational approach. To postulate that cardinal number of the whole set of all reals and that of

the partition ð0; 1Þ were quite identical could bring back the ghostly paradoxes that haunted mathematics at the

beginning of 20th century. Former ST was badly mistaken in its tacit yet totally unchecked assumption of qualitatively

equal densities of these two structurally different sets, which it has forgotten to estimate or measure. The unwarranted

assumption was usually disguised as a proof of mapping-based equivalence of potential counts of these two sets, of

course. Unique mappings may indicate similarity, but quality is not the same as similarity. Bohr’s atom was similar to

our solar system, yet of quite different quality.

By the same token the cardinal numbers of the sets of complex numbers, quaternions and octonions, respectively,

could be denoted by
@22 ¼ ð@20Þ2; @24 ¼ ð@20Þ4; @28 ¼ ð@20Þ8; ð6Þ
which are of the same qualitative type as that of all the real numbers. Georg Cantor was right when it comes to some

qualitative aspects of the cardinals. Nevertheless, both the CCH and GCH are false. In the light of the relations (1–5)

the cardinal numbers of the irrational partition ð0; 1Þ and that of the whole set of real numbers are both qualitatively

and quantitatively different, contrary to the CCH and GCH. Being independent of the other axioms of the ST, the

falsity of these hypotheses does not really ruin the ST, which is not concerned with theoretical status of particular sets.

Despite its obvious deficiencies, Georg Cantor has founded really formidable set theory, maybe slightly ahead of its

time. Modern physics needs more reliable ST, however.
4. Foundation of non-Cantorian set theory

Ancient Greeks have discovered the irrational numbers while performing calculations for practical measurements of

incommensurable line segments. According to a legend, Platonists allegedly even killed someone, who has revealed their

undesirable discovery to the world outside. Ancient PM was declared perfect a priori by a postulative decree and so

incommensurability might have been perceived as an imperfection on the idealistic image of the ancient pure mathe-

matics. Today’s PM has inherited the imperial trait from Platonists. It did not occur to them that the incommensu-

rability could be a sure sign of much higher perfection than they could realize back then.

I can imagine that a higher class of hyperinfinity may also exist, namely
@30 ¼ ð@10Þ@00 ¼ ð1�Þ1 ð7Þ
which may be called El Naschie cardinal, because it seemingly pertains to the infinitely-dimensional manifold of fractal

Cantorian spacetime Eð1Þ, whose properties El Naschie relentlessly investigated. For its multilayered abstract topo-

logical structure seems to transcend more regular topological manifolds. Given its hyperspatial character and infinitely-

dimensional nature one can span over that manifold a spacetime as well as other kind of vector spaces. It fits the bill for

manifold to support the abstract multispatial hyperspace [2]. The El Naschie cardinal sits thus higher in the hierarchy of

manifolds than the regular topological manifolds and so it fits structurally the fractal manifold too, which contains
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whole spaces among its elements [87]. Hence the infinitely-dimensional Cantorian spacetime is thus a sort of hyper-

continuum––or hierarchical continuum of embedded continua.

There are infinitely many cardinals beyond the already mentioned ones [112]. They can be created inductively [113]

the following way:
@ðxþ1Þp ¼ 2@xp ð8Þ
at every qualitatively different level x with any quantitative level p. Their definition always makes greater cardinal than

the previous one [114], of course. But the open question is whether or not a qualitatively different cardinal number can

exist between such two cardinals obtained from the formula (8). Unlike Georg Cantor, however, I would hope to

answer this question in affirmative. Since this is just a guess at this time, I would call this conjecture generalized hyper-

continuum hypothesis (GHCH), and then consequently the simpler, particular hyper-continuum hypothesis (PHCH)

may ask the simpler question: are there any qualitatively different cardinals between @2x and @3x? By giving tentatively

affirmative answers to both the GHCH and PHCH I am clearly betting on the sure winner ‘‘horse’’ called �Progress’.
Abstract mathematical infrastructure of our physical reality is so astonishingly diverse [3] that to bet otherwise would

be arrogant.

The other––more specific––reason for my optimism is that some points could exist within the Cantorian spacetime

manifold that somehow are not directly achievable, by analogy to sets, which are not Lebesgue measurable [115]. I shall

discuss this issue elsewhere. Continuity is a functional feature [116] that is often defined in terms of mappings [117],

whereas density of abstract spaces is usually defined in numbers’ set-based terms of ST [118] or in terms of abstract

points in topology [119]. Although topology is often called rubber geometry [120], its concepts are not that elastic. They

do not cover all aspects of geometric spaces over topological manifolds [3,63].

In order not to needlessly obscure my reasonings, I have omitted the fact that numbers come in pairs––each pair with

positive and negative copy of the given number, with the exception of the usual, natural zero (null). One could simply

multiply all the estimates of alephs by two, if accounting for negative numbers were desired. I would rather view them as

two different representations of basically the same number––hardly relevant to the ST.
5. Remark on paradoxes of the infinite

I will deal with issues of infinity elsewhere, but for the sake of the reader, who may be wondering how the division by

zero and the new continuum hypotheses are affected by the alleged paradoxes of the infinite, let me show her/him how

badly PM handled these issues in the past. A pretty good and representative example of such an alleged paradox of the

infinite is given in [121] where the infinity is blamed for an absurd statement, namely that 1¼ 2
0 � 1 ¼ 0 � 2 ) 1ð? ¼ ?Þ2 ð8aÞ
which would be quite inadmissible if the implication would be correct, but it is not. The primary reason for writing the

left-hand side (LHS) equation in this logically incomplete implication is an implicit (here) assertion that
0 � 0 ¼ 0 ð8bÞ
which was assumed as so self-evident that nobody contested it for the last 5000 years. Without assuming the Eq. (8b)

one could not write the LHS in Eq. (8a). The correct formula for multiplication of zeros is given in Eq. (0b), of course.

The formula (8b) defies the law of identity, but it still reigns supreme. In a sense all the aforementioned logical laws are

tacitly set-aside in Eq. (8b). Infinity is not really the culprit here, but the perfect scapegoat––an eternal excuse that never

fails us. Almost every mathematical fault could be successfully and shamelessly blamed on the infinity. Yet natural

infinity could actually save the incomplete implication (8a) from the absurd, for if one would admit that 0 ¼ 1=1 then

the whole nonsense simply disappears
0 ¼ 1=1 ) 0 � 1 ¼ 1=1 6¼ 0 � 2 ¼ 2=1 ð8cÞ
because the absurd implied in (8a) was actually caused by the unfortunate assumption (8b). This is not really a paradox

of infinity, but a paradox of the arbitrarily postulated multiplication by zeros that went quite unchecked and unproved.

The issue of the alleged paradoxes of the infinite was mistreated.

It was not my intention to provide negative example, but there is no other way to deal with such pure-mathematical

deceptions. One does not have to be mathematically gifted to see the evasiveness of the logically incomplete implication

(8a). Therefore we should deploy the synthetic approach to both mathematics and physics in order not to be persuaded

by such miscarriages. I am not saying that PM purposely obstructed truth. Nonetheless, it certainly tried hard to
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suppress proposed corrections to its logical flops. For its own sake, mathematics should be open to constructive

criticism and corrective amends, if necessary. The bill for the PM’s faults is being paid by physics.
6. Summary and conclusions

In the light of the present investigation the CCH and GCH can appear as somewhat incorrectly posted conjectures,

because their formulations were based upon imprecise estimates. They are vivid examples of the havoc that arbitrary

postulates can cause in otherwise perfectly valid reasonings. The two hypotheses as well as the former ST were founded

upon notions whose connotations were overly influenced by philosophy. Former ST introduced several abstract notions

that were formally valid, but not really constructed from operations or otherwise. They have been either explicitly

postulated in arbitrary axioms, or perhaps implicitly assumed by some unwarranted generalizations or poorly designed

abstractions. By using natural infinity as an abstract operand I have estimated the potential counts of sets and from

them drawn conclusions concerning their qualitative aspects.

If taken literally in its traditional context, the CCH is false and so is also the GCH. Although I can see how difficult

it may be to come up with quite adequate definitions of some subtle abstract concepts, yet I would prefer to avoid

arbitrary existential postulates in lieu of constructions. The idea that infinity could be defined by a feature of the sets

whose proper subsets are of equal power, was already floated by Galileo and presumably even earlier. Such a definition

could have been made constructive, for enumeration is a procedural concept. From the very moment when Dedekind

proposed it as definition of infinity in the ST and then put as an example his allegedly infinite train of thoughts,

however, the ST virtually ceased to investigate sets given in actual mathematical reality and started chasing after

plethora of ghosts-like abstract notions, vaguely implied by that fancy definition.

Falsity of the continuum hypotheses does not depreciate the overall value of the ST. Actually it seems very

advantageous to have them proven false, because the allegedly stable picture of abstract mathematical reality gains

quite unanticipated diversity. Unlike the Cantorian hypotheses, these new ones conjecture existence of certain distinct,

mixed hyper-continuum that may serve as the manifold over which dual pairs of linear vector spaces with quite

unrestricted abstract operations could be effectively constructed. Such unrestricted operability is desirable for the

abstract multispatial hyperspace whose existence is suggested by many formerly unexplained experiments.

It is often believed that Georg Cantor went mad because the CCH he was working on was theoretically quite

hopeless, undecidable problem [122]. Although it could not be decided on the axiomatic basis of the Cantorian set

theory, its falsity is pretty clear from the synthetic operational standpoint. Axioms are usually so postulated as to make

proofs of most, rather simple, properties easier. To derive something entirely new from such postulated axioms is hardly

possible. Therefore constructive synthetic approach is necessary to both: mathematics and physics. Experimentally

verifiable syntheses may transcend superficial axiomatic restrictions.
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