
       6
 

There’s a special interface that we can put on iterators that makes them easier to
deal with in many cases. One drawback of the iterators we’ve seen so far is that
they were difficult or impossible to rewind; once data came out of them, there
was no easy way to put it back again. Later on, in Chapter 8, we will want to
scan forward in an input stream, looking for a certain pattern; if we don’t see it,
we might want to rescan the same input, looking for a different pattern. This
is inconvenient to do with the iterators of Chapter 4, but the variation in this
chapter is just the thing, and we will use it extensively in Chapter 8.

What we need is a data structure more like an array or a list. We can make
the iterators look like linked lists, and having done so we get another benefit:
We can leverage the enormous amount of knowledge and technique that already
exists for dealing with linked lists.

A linked list is a data structure common in most languages, but seldom used
in Perl, because Perl’s arrays usually serve as a good enough replacement. We’ll
take a moment to review linked lists.

255

256         Infinite Streams

6.1   

A linked list is made up of nodes; each node has two parts: a head, which contains
some data, and a tail, which contains (a pointer to) another linked list node, or
possibly an undefined value, indicating that the current node is the last one in
the list:

12 "foo" 28 undef

Here’s typical Perl code that uses arrays to represent nodes:

sub node {

my ($h, $t) = @_;

[$h, $t];

}

sub head {

my ($ls) = @_;

$ls->[0];

}

sub tail {

my ($ls) = @_;

$ls->[1];

}

sub set_head {

my ($ls, $new_head) = @_;

$ls->[0] = $new_head;

}

sub set_tail {

my ($ls, $new_tail) = @_;

$ls->[1] = $new_tail;

}

Linked lists are one of the data structures that’s ubiquitous in all low-level pro-
gramming. They hold a sequence of data, the way an array does, but unlike an

.                257

array they needn’t be allocated all at once. To add a new data item to the front of
a linked list, all that’s needed is to allocate a new node, store the new data item
in the head of the node, and store the address of the old first node into the tail
of the new node; none of the data needs to be moved. This is what node() does:

$my_list = node($new_data, $my_list);

In contrast, inserting a new item at the start of an array requires all the array
elements to be moved over one space to make room.

Similarly, it’s easy to splice a data item into the middle of a linked list by
tweaking the tail of the node immediately before it:

sub insert_after {

my ($node, $new_data) = @_;

my $new_node = node($new_data, tail($node));

set_tail($node, $new_node);

}

To splice data into the middle of an array requires that all of the following elements
in the array be copied to make room, and the entire array may need to be moved
if there isn’t any extra space at the end for the last item to move into.

Scanning a linked list takes about twice as long as scanning the corresponding
array, since you spend as much time following the pointers as you do looking at
the data; with the array, there are no pointers. The big advantage of the array
over the list is that the array supports fast indexed access. You can get or set
array element $a[$n] instantly, regardless of what $n is, but accessing the nth
element of a list requires scanning the entire list starting from the head, taking
time proportional to n.

6.2    

As you’ll recall from Chapter 4, one of the primary reasons for using iterators is
to represent lists that might be enormous, or even infinite. Using a linked list
as an implementation of an iterator won’t work if all the list nodes must be in
memory at the same time.

The lazy computation version of the linked list has a series of nodes, just like
a regular linked list. And it might end with an undefined value in the tail of the
last node, just like a regular linked list. But the tail might instead be an object
called a promise. The promise is just that: a promise to compute the rest of the

258         Infinite Streams

list, if necessary. We can represent it as an anonymous function, which, if called,
will return the rest of the list nodes. We’ll add code to the tail() function so that
if it sees it’s about to return a promise, it will collect on the promise and return
the head node of the resulting list instead. Nobody accessing the list with the
head() or tail() functions will be able to tell that anything strange is going on:

package Stream;CODE LIBRARY
Stream.pm use base Exporter;

@EXPORT_OK = qw(node head tail drop upto upfrom show promise

filter transform merge list_to_stream cutsort

iterate_function cut_loops);

%EXPORT_TAGS = ('all' => \@EXPORT_OK);

sub node {

my ($h, $t) = @_;

[$h, $t];

}

sub head {

my ($s) = @_;

$s->[0];

}

sub tail {

my ($s) = @_;

if (is_promise($s->[1])) {

return $s->[1]->();

}

$s->[1];

}

sub is_promise {

UNIVERSAL::isa($_[0], 'CODE');

}

The modified version of the tail() function checks to see if the tail is actually a
promise; if so, it invokes the promise function to manufacture the real tail, and
returns that. This is sometimes called forcing the promise.

If nobody ever tries to look at the promise, then so much the better. The code
will never be invoked, and we’ll never have to go to the trouble of computing
the tail.

.                259

We’ll call these trick lists streams.
As is often the case, the most convenient representation of an empty stream

is an undefined value. If we do this, we won’t need a special test to see if a stream
is empty; a stream value will be true if and only if it’s nonempty. This also means
that we can create the last node in a stream by calling node($value); the result is
a stream node whose head contains $value and whose tail is undefined.

Finally, we’ll introduce some syntactic sugar for making promises, as we did
for making iterators:

sub promise (&) { $_[0] }

6.2.1 A Trivial Stream: upto()

To see how this all works, let’s look at a trivial stream. Recall the upto() function
from Section 4.2.1: Given two numbers, m and n, it returned an iterator that
would return all the numbers between m and n, inclusive. Here’s the linked list
version:

sub upto_list {

my ($m, $n) = @_;

return if $m > $n;

node($m, upto_list($m+1, $n));

}

This might consume a large amount of memory if $n is much larger than $m.
Here’s the lazy-stream version:

sub upto {

my ($m, $n) = @_;

return if $m > $n;

node($m, promise { upto($m+1, $n) });

}

It’s almost exactly the same. The only difference is that instead of immediately
making a recursive call to construct the tail of the list, it defers the recursive call
and manufactures a promise instead. The node it returns has the right value
($m) in the head, but the tail is an IOU. If someone looks at the tail, the
tail() function sees the promise and invokes the anonymous promise func-
tion, which in turn invokes upto($m+1, $n), which returns another stream

260         Infinite Streams

node. The new node’s head is $m+1 (which is what was wanted) and its tail
is another IOU.

If we keep examining the successive tails of the list, we see node after node,
as if they had all been constructed in advance. Eventually we get to the end of
the list, and $m is larger than $n; in this case when the tail() function invokes
the promise, the call to upto() returns an empty stream instead of another node.

If we want an infinite sequence of integers, it’s even easier: Get rid of the
code that terminates the stream:

sub upfrom {

my ($m) = @_;

node($m, promise { upfrom($m+1) });

}

Let’s return to upto(). Notice that although the upto() function was obtained by
a trivial transformation from the recursive upto_list() function, it is not itself
recursive; it returns immediately. A later call to tail() may call it again, but
the new call will again return immediately. Streams are therefore another way of
transforming recursive list functions into nonrecursive, iterative functions.

We could perform the transformation in reverse on upfrom() and come up
with a recursive list version:

sub upfrom_list {

my ($m) = @_;

node($m, upfrom_list($m+1));

}

This function does indeed compute an infinite list of integers, taking an infinite
amount of time and memory to do so.

6.2.2 Utilities for Streams

The first function you need when you invent a new data structure is a diag-
nostic function that dumps out the contents of the data structure. Here’s a
stripped-down version:

sub show {

my $s = shift;

while ($s) {

.                261

print head($s), $";

$s = tail($s);

}

print $/;

}

If the stream $s is empty, the function exits, printing $/, normally a newline. If
not, it prints the head value of $s followed by $" (normally a space), and then
sets $s to its tail to repeat the process for the next node.

Since this prints every element of a stream, it’s clearly not useful for infinite
streams; the while loop will never end. So the version of show() we’ll actually
use will accept an optional parameter n, which limits the number of elements
printed. If n is specified, show() will print only the first n elements:

sub show {

my ($s, $n) = @_;

while ($s && (! defined $n || $n-- > 0)) {

print head($s), $";

$s = tail($s);

}

print $/;

}

For example:

use Stream 'upfrom', 'show'; CODE LIBRARY
show-example-1

show(upfrom(7), 10);

This prints:

7 8 9 10 11 12 13 14 15 16

We can omit the second argument of show(), in which case it will print all the
elements of the stream. For an infinite stream like upfrom(7), this takes a long
time. For finite streams, there’s no problem:

use Stream 'upto', 'show'; CODE LIBRARY
show-example-2

show(upto(3,6));

262         Infinite Streams

The output:

3 4 5 6

The line $s = tail($s) in show() is a fairly common operation, so we’ll introduce
an abbreviation:

sub drop {

my $h = head($_[0]);

$_[0] = tail($_[0]);

return $h;

}

Now we can call drop($s), which is analogous to pop for arrays: It removes the
first element from a stream, modifying the stream in place, and returns that
element. show() becomes:

sub show {

my ($s, $n) = @_;

while ($s && (! defined $n || $n-- > 0)) {

print drop($s), $";

}

print $/;

}

As with the iterators of Chapter 4, we’ll want a few basic utilities such as versions
of map and grep for streams. Once again, the analogue of map is simpler:

sub transform (&$) {

my $f = shift;

my $s = shift;

return unless $s;

node($f->(head($s)),

promise { transform($f, tail($s)) });

}

This example is prototypical of functions that operate on streams, so you should
examine it closely. It’s called in a way that’s similar to map():

transform {...} $s;

.                 263

For example,

my $evens = transform { $_[0] * 2 } upfrom(1);

generates an infinite stream of all positive even integers. Or rather, it generates
the first node of such a stream, and a promise to generate more, should we try
to examine the later elements.

The analog of grep() is only a little more complicated:

sub filter (&$) {

my $f = shift;

my $s = shift;

until (! $s || $f->(head($s))) {

drop($s);

}

return if ! $s;

node(head($s),

promise { filter($f, tail($s)) });

}

filter() scans the elements of $s until either it runs out of nodes (! $s) or the
predicate function $f returns true ($f->(head($s))). In the former case, there
are no matching elements, so it returns an empty stream; in the latter case, it
returns a new stream whose head is the matching element it found and whose
tail is a promise to filter the rest of the stream in the same way. It would probably
be instructive to compare this with the igrep() function of Section 4.4.2.

Another utility that will be useful is one to iterate a function repeatedly. Given
an initial value x and a function f, it produces the (infinite) stream containing x,
f (x), f (f (x)), We could write it this way:

sub iterate_function {

my ($f, $x) = @_;

node($x, promise { iterate_function($f, $f->($x)) });

}

But there’s a more interesting and even simpler way to do it that we’ll see in
Section 6.6.1.

6.3   

The real power of streams arises from the fact that it’s possible to define a stream
in terms of itself. Let’s consider the simplest possible example, a stream that

264         Infinite Streams

contains an infinite sequence of carrots. Following the upfrom() example of the
previous section, we begin like this:

sub carrots {

node('carrot', promise { carrots() });

}

my $carrots = carrots();

It’s silly to define a function that we’re going to call from only one place; we
might as well do this:

my $carrots = node('carrot', promise { carrots() });

except that we now must eliminate the call to carrots() from inside the promise.
But that’s easy too, because the carrots() and $carrots will have the same
value:

my $carrots = node('carrot', promise { $carrots });

This looks good, but it doesn’t quite work, because of an oddity in the Perl
semantics. The scope of the my variable $carrots doesn’t begin until the next
statement, and that means that the two mentions of $carrots refer to differ-
ent variables. The declaration creates a new lexical variable, which is assigned
to, but the $carrots on the right-hand side of the assignment is the global
variable $carrots, not the same as the one we’re creating. The line needs a
tweak:

my $carrots;

$carrots = node('carrot', promise { $carrots });

We’ve now defined $carrots as a stream whose head contains 'carrot' and
whose tail is a promise to produce the rest of the stream — which is identical to
the entire stream. And it does work:

show($carrots, 10);

The output:

carrot carrot carrot carrot carrot carrot carrot carrot carrot carrot

.                 265

6.3.1 Memoizing Streams

Let’s look at an example that’s a little less trivial than the one with the car-
rots: We’ll construct a stream of all powers of 2. We could follow the upfrom()

pattern:

sub pow2_from {

my $n = shift;

node($n, promise {pow2_from($n*2)})

}

my $powers_of_2 = pow2_from(1);

but again, we can get rid of the special-purpose pow2_from() function in the same
way that we did for the carrot stream:

my $powers_of_2;

$powers_of_2 =

node(1, promise { transform {$_[0]*2} $powers_of_2 });

This says that the stream of powers of 2 begins with the element 1, and then
follows with a copy of itself with every element doubled. The stream itself contains
1, 2, 4, 8, 16, 32, . . . ; the doubled version contains 2, 4, 8, 16, 32, 64, . . . ;
and if you append a 1 to the beginning of the doubled stream, you get the
original stream back. Unfortunately, a serious and subtle problem arises with
this definition. It does produce the correct output:

show($powers_of_2, 10);

1 2 4 8 16 32 64 128 256 512

But if we instrument the definition, we can see that the transformation subroutine
is being called too many times:

$powers_of_2 =

node(1, promise {

transform {

warn "Doubling $_[0]\n";

$_[0]*2

} $powers_of_2

});

266         Infinite Streams

The output is now:

1 Doubling 1

2 Doubling 1

Doubling 2

4 Doubling 1

Doubling 2

Doubling 4

8 Doubling 1

Doubling 2

Doubling 4

Doubling 8

16 Doubling 1

...

The show() method starts by printing the head of the stream, which is 1. Then
it goes to get the tail, using the tail() method:

1 ×2Show 10

Tail 1 ×2 Show 9

Print "1"

sub tail {

my ($s) = @_;

if (is_promise($s->[1])) {

return $s->[1]->();

}

$s->[1];

}

Since the tail is a promise, this forces the promise, which calls transform {...}

$powers_of_2. transform() gets the head of $powers_of_2, which is 1, and
doubles it, yielding a stream whose head is 2 and whose tail is a promise to double
the rest of the elements of $powers_of_2. This stream is the tail of $powers_of_2,
and show() prints its head, which is 2.

.                 267

1 ×22 ×2Show 9

1

×2Show 9

Print "2"

Tail

show() now wants to get the tail of the tail. It applies the tail() method
to the tail stream. But the tail of the tail is a promise to double the tail of
$powers_of_2. This promise is invoked, and the first thing it needs to do is
compute the tail of $powers_of_2. This is the key problem, because computing
the tail of $powers_of_2 is something we’ve already done. Nevertheless, the
promise is forced a second time, causing another invocation of transform and
producing a stream whose head is 2 and whose tail is a promise to double the
rest of the elements of $powers_of_2:

×2

1

×2Show 8

2 ×2Show 8 1 ×2Tail Tail

1 ×2×2Show 8 Tail

2 ×2Show 8 ×2 1 ×2Tail

transform doubles the 2 and returns a new stream whose head is 4 and whose
tail is (deep breath now) a promise to double the elements of the tail of a stream
that was created by doubling the elements of the tail of $powers_of_2, which was
itself created by doubling its own tail. show() prints the 4, but when it tries to
get the tail of the new stream, it sets off a cascade of called promises, to get the

268         Infinite Streams

tail of the doubled stream, which itself needs to get the tail of another stream,
which is the doubled version of the tail of the main stream:

Show 7 ×2×2

1

×2

Print "4"

1 ×22 ×2Show 7 ×2 TailTail

1 ×2Show 7 ×2×2 Tail

Show 7 4 1 ×22 ×2×2 TailTailTail

Show 8 4 ×2 2 ×2 1 ×2TailTail

Each element of the stream depends on calculating the tail of the origi-
nal stream, and every time we look at a new element, we calculate the tail of
$powers_of_2, including the act of doubling the first element. We’re essentially
computing each element from scratch by building it up from 1, and what we
should be doing is building each element on the previous element. Our basic
problem is that we’re forcing the same promises over and over. But by now we
have a convenient solution to problems that involve repeating the same work
over and over: memoization. We should remember the result whenever we force a
promise, and then if we need the same result again, instead of calling the promise
function, we’ll get it from the cache.

There’s a really obvious, natural place to cache the result of a promise, too.
Since we don’t need the promise itself anymore, we can store the result in the
tail of the stream — which was where it would have been if we hadn’t deferred
its computation in the first place.

The change to the code is simple:

sub tail {

my ($s) = @_;

if (is_promise($s->[1])) {

$s->[1] = $s->[1]->();

.                  269

}

$s->[1];

}

If the tail is a promise, we force the promise, and throw away the promise and
replace it with the result, which is the real tail. Then we return the real tail. If
we try to look at the tail again, the promise will be gone, and we’ll see just the
correct tail.

With this change, the $powers_of_2 stream is both correct and efficient. The
instrumented version produces output that looks like this:

1 Doubling 1

2 Doubling 2

4 Doubling 4

8 Doubling 8

16 Doubling 16

32 Doubling 32

...

6.4   

As an example of a problem that’s easy to solve with streams, we’ll turn to an old
chestnut of computer science, Hamming’s Problem.1 Hamming’s problem asks
for a list of the numbers of the form 2i3j5k . The list begins as follows:

1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36 40 ...

It omits all multiples of 7, 11, 13, 17, and any other primes larger than 5.
The obvious method for generating this list is to try every number starting

with 1. Suppose we want to learn whether the number n is on this list. If n is a
multiple of 2, 3, or 5, then divide it by 2, 3, or 5 (respectively) until the result is
no longer a multiple of 2, 3, or 5. If the final result is 1, then the original number
n was a Hamming number. The code might look like this:

sub is_hamming {

my $n = shift;

$n/=2 while $n%2 == 0;

1 Named for Richard W. Hamming, who also invented Hamming codes.

270         Infinite Streams

$n/=3 while $n%3 == 0;

$n/=5 while $n%5 == 0;

return $n == 1;

}

Return the first $N hamming numbers

sub hamming {

my $N = shift;

my @hamming;

my $t = 1;

until (@hamming == $N) {

push @hamming, $t if is_hamming($t);

$t++;

}

@hamming;

}

Unfortunately, this is completely impractical. It starts off well enough. But the
example Hamming numbers above are misleading — they’re too close together.
As you go further out in the list, the Hamming numbers get farther and farther
apart. The 2999th Hamming number is 278,628,139,008. Nobody has time
to test 278,628,139,008 numbers; even if they did, they would have to test
314,613,072 more before they found the 3000th Hamming number.

But there’s a better way to solve the problem. There are four kinds of Ham-
ming numbers: multiples of 2, multiples of 3, multiples of 5, and 1. And
moreover, every Hamming number except 1 is either 2, 3, or 5 times some other
Hamming number. Suppose we took the Hamming sequence and doubled it,
tripled it, and quintupled it:

Hamming: 1 2 3 4 5 6 8 9 10 12 15 16 18 20 …

Doubled: 2 4 6 8 10 12 16 18 20 24 30 32 36 40 …
Tripled: 3 6 9 12 15 18 24 27 30 36 45 48 54 60 …

Quintupled: 5 10 15 20 25 30 40 45 50 60 75 80 90 100 …

and then merged the doubled, tripled, and quintupled sequences in order:

Merged: 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36 40 …

.                  271

The result would be exactly the Hamming sequence, except for the 1 at the
beginning. Except for the merging, this is similar to the way we constructed the
sequence of powers of 2 earlier. To do it, we’ll need a merging function:

sub merge {

my ($S, $T) = @_;

return $T unless $S;

return $S unless $T;

my ($s, $t) = (head($S), head($T));

if ($s > $t) {

node($t, promise {merge($S, tail($T))});

} elsif ($s < $t) {

node($s, promise {merge(tail($S), $T)});

} else {

node($s, promise {merge(tail($S), tail($T))});

}

}

This function takes two streams of numbers, $S and $T, which are assumed to
be in sorted order, and merges them into a single stream of numbers whose
elements are also in sorted order. If either $S or $T is empty, the result of the
merge is simply the other stream. (If both are empty, the result is therefore an
empty stream.) If neither is empty, the function examines the head elements of
$S and $T to decide which one should come out of the merged stream first. It
then constructs a stream node whose head is the lesser of the two head elements,
and whose tail is a promise to merge the rest of $S and $T in the same way. If
the heads of $S and $T are the same number, the duplicate is eliminated in the
output.

To avoid cluttering up our code with many calls to transform(), we’ll build
a utility that multiplies every element of a stream by a constant:

use Stream qw(transform promise merge node show); CODE LIBRARY
hamming.pl

sub scale {

my ($s, $c) = @_;

transform { $_[0]*$c } $s;

}

Now we can define a Hamming stream as a stream that begins with 1 and is
otherwise identical to the merge of the doubled, tripled, and quintupled versions

272         Infinite Streams

of itself:

my $hamming;

$hamming = node(1,

promise {

merge(scale($hamming, 2),

merge(scale($hamming, 3),

scale($hamming, 5),

))

}

);

show($hamming, 3000);

This stream generates 3000 Hamming numbers (up to 278,942,752,080 =
24 · 320 · 5) in about 14 seconds. Its structure looks like this:

1 MergeH 2x

Merge 3x

5x

6.5   

Here’s a question that comes up fairly often on IRC and in Perl-related news-
groups: Given a regex, how can one generate a list of all the strings matched by
the regex? The problem can be rather difficult to solve. But the solution with
streams is straightforward and compact.

There are a few complications that we should note first. In the presence of
assertions and other oddities, there may not be any string that matches a given
regex. For example, nothing matches the regex /a\bz/, because it requires the
letters a and z to be adjacent, with a zero-length word boundary in between,
and by definition, a word boundary does not occur between two adjacent letters.
Similarly, /aˆb/ can’t match any string, because the b must occur at the beginning
of the string, but the a must occur before the beginning of the string.

.                      273

Also, if our function is going to take a real regex as input, we have to worry
about parsing regexes. We’ll ignore this part of the problem until Chapter 8, where
we’ll build a parsing system that plugs into the string generator we’ll develop here.

Most of the basic regex features can be reduced to combinations of a few
primitive operators. These operators are concatenation, union, and *.2 We’ll
review; if A and B are regexes, then:

• AB, the concatenation of A and B, is a regex that matches any string of the
form ab, where a is a string that matches A and b is a string that matches B.

• A | B, the union of A and B, is a regex that matches any string s that matches
A or B.

• A* matches the empty string, or the concatenation of one or more strings
that each individually match A.

With these operators, and the trivial regexes that match literal strings, we can
build most of Perl’s other regex operations. For example, /A+/ is the same as
/AA*/, and /A?/ is the same as /|A/. Character classes are equivalent to unions;
for example, /[abc]/ and /a|b|c/ are equivalent. Similarly /./ is a union of 255
different characters (everything but the newline.)

ˆ and $ are easier to remove than to add, so we’ll include them by default, so
that all regexes are implicitly anchored at both ends. Our system will be able to
generate the strings that match a regex only if the regex begins with ˆ and ends
with $. This is really no restriction at all, however. If we want to generate the
strings that match /A$/, we can generate the strings that match /ˆ.*A$/ instead;
these are exactly the same strings. Similarly the strings that match /ˆA/ are the
same as those that match /ˆA.*$/ and the strings that match /A/ are the same
as those that match /ˆ.*A.*$/. Every regex is therefore equivalent to one that
begins with ˆ and ends with $.

We’ll represent a regex as a (possibly infinite) stream of the strings that it
matches. The Regex class will import from Stream:

package Regex; CODE LIBRARY
Regex.pmuse Stream ':all';

use base 'Exporter';

@EXPORT_OK = qw(literal union concat star plus charclass show

matches);

2 The * operator is officially called the closure operator, and the set of strings that match /A*/ is
the closure of the set of those that match /A/. This has nothing to do with anonymous function
closures.

274         Infinite Streams

foo undef

 . The stream generated by literal().

Literal regexes are trivial. The corresponding stream has only one element, as
shown in Figure 6.1:

sub literal {

my $string = shift;

node($string, undef);

}

show(literal("foo"));

foo

Union is almost as easy. We have some streams, and we want to merge all their
elements into a single stream. We can’t append the streams beginning-to-end as
we would with ordinary lists, because the streams might not have ends. Instead,
we’ll interleave the elements. Here’s a demonstration function that mingles two
streams this way:

sub mingle2 {

my ($s, $t) = @_;

return $t unless $s;

return $s unless $t;

node(head($s),

node(head($t),

promise { mingle2(tail($s),

tail($t))

}

));

}

Later on it will be more convenient if we have a more general version that can
mingle any number of streams:

sub union {

my ($h, @s) = grep $_, @_;

return unless $h;

return $h unless @s;

node(head($h),

promise {

.                      275

union(@s, tail($h));

});

}

The function starts by throwing out any empty streams from the argument list.
Empty streams won’t contribute anything to the output, so we can discard them.
If all the input streams are empty, union() returns an empty stream. If there is
only one nonempty input stream, union() returns it unchanged. Otherwise, the
function does the mingle: The first element of the first stream is at the head of the
result, and the rest of the result is obtained by mingling the rest of the streams
with the rest of the first stream. The key point here is that the function puts
tail($h) at the end of the argument list in the recursive call, so that a different
stream gets assigned to $h next time around. This will ensure that all the streams
get cycled through the $h position in turn. The behavior is depicted in Figure 6.2.
Here’s a simple example:

generate infinite stream ($k:1, $k:2, $k:3, ...)

sub constant {

my $k = shift;

my $i = shift || 1;

my $s = node("$k:$i", promise { constant($k, $i+1) });

}

my $fish = constant('fish');

show($fish, 3);

fish:1 fish:2 fish:3

my $soup = union($fish, constant('dog'), constant('carrot'));

show($soup, 10);

fish:1 dog:1 carrot:1 fish:2 dog:2 carrot:2 fish:3 dog:3 carrot:3 fish:4

Now we’ll do concatenation. If either of regexes S or T never matches anything,
then ST also can’t match anything. Otherwise, S is matched by some list of strings,
and this list has a head s and a tail stail; similarly T is matched by some other list of
strings with head t and tail ttail. What strings are matched by ST? We can choose
one string that matches S and one that matches T, and their concatenation is
one of the strings that matches ST. Since we split each of the two lists into two
parts, we have four choices for how to construct a string that matches ST:

1. st matches ST

2. s followed by any string from ttail matches ST

276         Infinite Streams

Union11 2

3 ...

...

1

2

Union11

2 3

...

...

...

...

1

2

Union11

1

1

2 3

1

...

...

2

Union1

2 3

1 2

...

1Union

1 2 3

1

...

2

 . The behavior of union().

3. Any string from stail followed by t matches ST

4. Any string from stail followed by any string from ttail matches ST

Notationally, we write:

(s | stail).(t | ttail) = s.t | s.ttail | stail.t | stail.ttail

The first of these contains only one string. The middle two are simple transfor-
mations of the tails of S and T. The last one is a recursive call to the concat()

function itself. So the code is simple:

sub concat {

my ($S, $T) = @_;

.                      277

return unless $S && $T;

my ($s, $t) = (head($S), head($T));

node("st", promise {

union(postcat(tail($S), $t),

precat(tail($T), $s),

concat(tail($S), tail($T)),

)

});

}

precat() and postcat() are simple utility functions that concatenate a string to
the beginning or end of every element of a stream:

sub precat {

my ($s, $c) = @_;

transform {"c_[0]"} $s;

}

sub postcat {

my ($s, $c) = @_;

transform {"$_[0]$c"} $s;

}

An example:

I’m /ˆ(a|b)(c|d)$/

my $z = concat(union(literal("a"), literal("b")),

union(literal("c"), literal("d")),

);

show($z);

ac bc ad bd

The behavior of concat() is illustrated in Figure 6.3.
Now that we have concat(), the * operator is trivial, because of this simple

identity:

s* = "" | ss*

That is, s* is either the empty string or else something that matches s followed
by something else that matches s*. We want to generate s*; let’s call this result r.

278         Infinite Streams

11

Concatenate

transform

1

2 3

1

2 3

...

2 3 ...

...

Concatenate
1 2 3

1 2 3

...

...

2 3 ...

M
E
R
G
E

transform

21

Concatenate

transform

1

2 3

11

1

2 3

...

3 ...

...

2 3 ...

M
E
R
G
E

transform

1 3 ...

transform

12 Concatenate
2 3

211

1

2 3

...

3 ...

...

M
E
R
G
E

transform

1

 . The behavior and internals of concat().

.                      279

22
Concatenate

transform

2

3

2

3

...

3 ...

...

3 ...

M
E
R
G
E

M
E
R
G
E

transform

transform

1

1 3 ...

3 ...

transform

Concatenate

transform

2

3

2

3

...

3 ...

...

3 ...

M
E
R
G
E

M
E
R
G
E

transform

transform

1

1 3 ...

3 ...

transform

22122111

122111

 . The behavior and internals of concat(), continued.

280         Infinite Streams

P
concatenate(empty)

 . The behavior and internals of star().

Then:

r = "" | sr

Now we can use the wonderful recursive definition capability of streams:

sub star {

my $s = shift;

my $r;

$r = node("", promise { concat($s, $r) });

}

$r, the result, will be equal to the * of $s. It begins with the empty string, and
the rest of $r is formed by concatenating something in $s with $r itself: Figure
6.4 shows how it works; here’s an example:

I’m /ˆ(HONK)*$/

show(star(literal('HONK')), 6)

HONK HONKHONK HONKHONKHONK HONKHONKHONKHONK HONKHONKHONKHONKHONK

The empty string is hiding at the beginning of that output line. Let’s use a
modified version of show() to make it visible:

sub show {

my ($s, $n) = @_;

while ($s && (! defined $n || $n-- > 0)) {

print qq{"}, drop($s), qq{"\n};

}

print "\n";

}

Now the output is:

""

"HONK"

.                      281

"HONKHONK"

"HONKHONKHONK"

"HONKHONKHONKHONK"

"HONKHONKHONKHONKHONK"

We can throw in a couple of extra utilities if we like:

charclass('abc') = /ˆ[abc]$/

sub charclass {

my $class = shift;

union(map literal($_), split(//, $class));

}

plus($s) = /ˆs+$/

sub plus {

my $s = shift;

concat($s, star($s));

}

And now a demonstration:

use Regex qw(concat star literal show);

I represent /ˆab*$/

my $regex1 = concat(literal("a"),

star(literal("b"))

);

show($regex1, 10);

The output is:

"a"

"ab"

"abb"

"abbb"

"abbbb"

"abbbbb"

"abbbbbb"

"abbbbbbb"

"abbbbbbbb"

"abbbbbbbbb"

282         Infinite Streams

Let’s try something a little more interesting:

I represent /ˆ(aa|b)*$/

my $regex2 = star(union(literal("aa"),

literal("b"),

));

show($regex2, 16);

The output is:

""

"aa"

"b"

"aaaa"

"baa"

"aab"

"bb"

"aaaaaa"

"baaaa"

"aabaa"

"bbaa"

"aaaab"

"baab"

"aabb"

"bbb"

"aaaaaaaa"

...

One last example:

I represent /ˆ(ab+|c)*$/

my $regex3 = star(union(concat(literal("a"),

plus(literal("b"))),

literal("c")

));

show($regex3, 20);

The output is:

""

"ab"

.                      283

"c"

"abab"

"cab"

"abb"

"abc"

"abbab"

"abbb"

"ababab"

"cc"

"abbbb"

"abcab"

"abbc"

"abbbbb"

"ababb"

"abbbab"

"abbbbbb"

"ababc"

"cabab"

...

6.5.1 Generating Strings in Order

It’s hard to be sure, from looking at this last output, that it really is generating all
the strings that will match /ˆ(ab+|c)*/. Will cccc really show up? Where’s cabb?
We might prefer the strings to come out in some order, say in order by length.
It happens that this is also rather easy to do. Let’s say that a stream of strings is
“ordered” if no string comes out after a longer string has come out, and see what
will be necessary to generate ordered streams.

The streams produced by literal() contain only one string, so those streams
are already ordered, because one item can’t be disordered.3 concat(), it turns out,
is already generating its elements in order as best it can. The business end is:

my ($s, $t) = (head($S), head($T));

node("st", promise {

union(precat(tail($T), $s),

3 Perhaps I should have included a longer explanation of this point, since I seem to be the only
person in the world who is bothered by the phrase “Your call will be answered in the order it was
received.” It always seems to me that my call could not have an order.

284         Infinite Streams

postcat(tail($S), $t),

concat(tail($S), tail($T)),

)

});

Let’s suppose that the inputs, $S and $T, are already ordered. In that case, $s is
one of the shortest elements of $S, and $t is one of the shortest elements of $T.
st therefore can’t be any longer than any other concatenation of elements from
$S and $T, so it’s all right that it will come out first. As long as the output of the
union() call is ordered, the output of concat() will be too.

union() does need some rewriting. It currently cycles through its input
streams in sequence. We need to modify it to find the input stream whose head
element is shortest and to process that stream first:

sub union {

my (@s) = grep $_, @_;

return unless @s;

return $s[0] if @s == 1;

my $si = index_of_shortest(@s);

node(head($s[$si]),

promise {

union(map $_ == $si ? tail($s[$_]) : $s[$_],

0 .. $#s);

});

}

The first two returns correspond to the early returns in the original version of
union(), handling the special cases of zero or one argument stream. If there’s more
than one argument stream, the function calls index_of_shortest(), which will
examine the heads of the streams to find the shortest string. index_of_shortest()
returns $si, the index number of the stream with the shortest head string. union()
pulls off this string and puts it first in the output, then calls itself recursively to
process the remaining data. index_of_shortest() is quite ordinary:

sub index_of_shortest {

my @s = @_;

my $minlen = length(head($s[0]));

my $si = 0;

for (1 .. $#s) {

my $h = head($s[$_]);

if (length($h) < $minlen) {

.                      285

$minlen = length($h);

$si = $_;

}

}

$si;

}

The last function to take care of is star(). But star(), it turns out, has taken
care of itself:

sub star {

my $s = shift;

my $r;

$r = node("", promise { concat($s, $r) });

}

The empty string, which comes out first, is certainly no longer than any other
element in $r’s output. And since we already know that concat produces an
ordered stream, we’re finished.

That last example again:

I represent /ˆ(ab+|c)*$/

my $regex3 = star(union(concat(literal("a"),

plus(literal("b"))),

literal("c")

));

show($regex3, 30);

And the now-sorted output:

""

"c"

"ab"

"cc"

"abb"

"cab"

"ccc"

"abc"

"abbb"

"cabb"

"ccab"

286         Infinite Streams

"cccc"

"cabc"

"abbc"

"abab"

"abcc"

"abbbb"

"cabbb"

"ccabb"

"cccab"

"ccccc"

"ccabc"

"cabbc"

"cabab"

"cabcc"

"abbbc"

"ababb"

"abcab"

"abccc"

"ababc"

...

Aha, cccc and cabb were produced, after all.

6.5.2 Regex Matching

At this point we’ve built a system that can serve as a regex engine: Given a regex
and a target string, it can decide whether the string matches the regex. A regex
is a representation of a set of strings that supports operations like concatenation,
union, and closure. Our regex-string-streams fit the bill. Here’s a regex-matching
engine:

sub matches {

my ($string, $regex) = @_;

while ($regex) {

my $s = drop($regex);

return 1 if $s eq $string;

return 0 if length($s) > length($string);

}

return 0;

}

.                      287

The $regex argument here is one of our regex streams. (After we attach the parser
from Chapter 8, we’ll be able to pass in a regex in standard Perl notation instead.)
The function looks at the shortest string matched by the regex; if it’s the target
string, then we have a match. If it’s longer than the target string, then the match
fails, because every other string in the regex is also too long. Otherwise, the
function throws away the head and repeats with the next string. If the regex runs
out of strings, the match fails.

This is just an example; it should be emphasized that, in general, streams are
not a good way to do regex matching. To determine whether a string matches
/ˆ[ab]*$/, this method generates all possible strings of a’s and b’s and checks
each one to see if it is the target string. This is obviously a silly way to do it.
The amount of time it takes is exponential in the length of the target string; an
obviously better algorithm is to scan the target string left to right, checking each
character to make sure it is an a or a b, which requires only linear time.

Nevertheless, in some ways this implementation of regex matching is actually
more powerful than Perl’s built-in matcher. For example, there’s no convenient
way to ask Perl if a string contains a balanced arrangement of parentheses. (Start-
ing in 5.005, you can use the (?{...}) operator, but it’s nasty.4) But our “regexes”
are just lists of strings, and the lists can contain whatever we want. If we want a
regex that represents balanced arrangements of parentheses, all we need to do is
construct a stream that contains the strings we want.

Let’s say that we would like to match strings of a, (, and) in which the
parentheses are balanced. That is, we’d like to match the following strings:

""

"a"

"aa"

"()"

"aaa"

"a()"

"()a"

"(a)"

"aaaa"

"aa()"

"a()a"

"()aa"

"a(a)"

"(a)a"

4 /ˆ(?{local$d=0})(?:\((?{$d++})|\)(?{$d--})(?(?{$d<0})(?!))|(?>[ˆ()]*))*(?(?{$d!=0})(?!))$/.

288         Infinite Streams

"(aa)"

"()()"

"(())"

"aaaaa"

...

Suppose s is a regex that matches the expressions that are legal between paren-
theses. Then a sequence of these expressions with properly balanced parentheses
is one of the following:

• the empty string, or

• something that matches s, or

• (b), where b is some balanced string, or

• a balanced string followed by one of the above

Then we can almost read off the definition:

sub bal {

my $contents = shift;

my $bal;

$bal = node("", promise {

concat($bal,

union($contents,

transform {"($_[0])"} $bal,

)

)

});

}

And now the question “Does $s contain a balanced sequence of parentheses, a’s,
and b’s” is answered by:

if (matches($s, bal(charclass('ab')))) {

...

}

6.5.3 Cutsorting

The regex-string generator suggests another problem that sometimes comes up.
At present, it generates strings in order by length, but strings of the same length

.                      289

come out in no particular order, as in the following column on the left. Suppose
we want the strings of the same length to come out in sorted order, as in the
column on the right:

"" ""

"c" "c"

"ab" "ab"

"cc" "cc"

"abb" "abb"

"cab" "abc"

"ccc" "cab"

"abc" "ccc"

"abbb" "abab"

"cabb" "abbb"

"ccab" "abbc"

"cccc" "abcc"

"cabc" "cabb"

"abbc" "cabc"

"abab" "ccab"

"abcc" "cccc"

"abbbb" "ababb"

"cabbb" "ababc"

"ccabb" "abbab"

"cccab" "abbbb"

"ccccc" "abbbc"

"ccabc" "abbcc"

"cabbc" "abcab"

"cabab" "abccc"

"cabcc" "cabab"

"abbbc" "cabbb"

"ababb" "cabbc"

"abcab" "cabcc"

"abccc" "ccabb"

"ababc" "ccabc"

"abbab" "cccab"

"abbcc" "ccccc"

... ...

We should note first that although it’s reasonable to ask for the strings sorted into
groups by length and then lexicographically within each group, it’s not reasonable
to ask for all the strings to be sorted lexicographically. This is for two reasons.

290         Infinite Streams

First, even if we could do it, the result wouldn’t be useful:

""

"ab"

"abab"

"ababab"

"abababab"

"ababababab"

"abababababab"

...

None of the strings that contains c would ever appear, because there would
always be some other string that was lexicographically earlier that we had not
yet emitted. But the second reason is that in general it’s not possible to sort an
infinite stream at all. In this example, the first string to be emitted is clearly the
empty string. The second string out should be "ab". But the sorting process can’t
know that. It can’t emit the "ab" unless it’s sure that no other string would come
between "" and "ab". It doesn’t know that the one-billionth string in the input
won’t be "a". So it can never emit the "ab", because no matter how long it waits
to do so, there’s always a possibility that "a" will be right around the corner.

But if we know in advance that the input stream will be sorted by string
length, and that there will be only a finite number of strings of each length, then
we certainly can sort each group of strings of the same length.

In general, the problem with sorting is that, given some string we want to
emit, we don’t know whether it’s safe to emit it without examining the entire rest
of the stream, which might be infinite. But suppose we could supply a function
that would say whether or not it was safe. If the input stream is already sorted by
length, then at the moment we see the first length–3 string in the input, we know
it’s safe to emit all the length–2 strings that we’ve seen already; the function could
tell us this. The function effectively “cuts” the stream off, saying that enough of
the input has been examined to determine the next part of the output, and that
the cut-off part of the input doesn’t matter yet.

This idea is the basis of cutsorting. The cutting function will get two argu-
ments: the element we would like to emit, which should be the smallest one we
have seen so far, and the current element of the input stream. The cutting func-
tion will return true if we have seen enough of the input stream to be sure that
it’s safe to emit the element we want to, and false if the rest of the input stream
might contain an element that precedes the one we want the function to emit.

For sorting by length, the cutting function is trivial:

sub cut_bylen {

my ($a, $b) = @_;

.                      291

It’s OK to emit item $a if the next item in the stream is $b

length($a) < length($b);

}

Since the cutsorter may need to emit several items at a time, we’ll build a utility
function for doing that:

sub list_to_stream {

my $node = pop;

while (@_) {

$node = node(pop, $node);

}

$node;

}

list_to_stream(h1, h2, ... t) returns a stream that starts with h1, h2, ...

and whose final tail is t. t may be another (possibly empty) stream or a promise.
list_to_stream(h, t) is equivalent to node(h, t).

The cutsorting function gets four arguments: $s, the stream to sort; $cmp,
the sorting comparator (analogous to the comparator function of sort()); and
$cut, the cutting test. It also gets an auxiliary argument @pending that we’ll see
in a moment:

sub insert (\@$$);

sub cutsort {

my ($s, $cmp, $cut, @pending) = @_;

my @emit;

while ($s) {

while (@pending && $cut->($pending[0], head($s))) {

push @emit, shift @pending;

}

if (@emit) {

return list_to_stream(@emit,

promise { cutsort($s, $cmp, $cut, @pending) });

} else {

insert(@pending, head($s), $cmp);

$s = tail($s);

}

}

292         Infinite Streams

return list_to_stream(@pending, undef);

}

The idea of the cutsorter is to scan through the input stream, maintaining a
buffer of items that have been seen so far but not yet emitted; this is @pending.
@pending is kept in sorted order, so that if any element is ready to come out, it
will be $pending[0]. The while (@pending...) loop checks to see if any elements
can be emitted; if so, the emittable elements are transferred to @emit. If there
are any such elements, they are emitted immediately: cutsort() returns a stream
that begins with these elements and that ends with a promise to cutsort the
remaining elements of $s. Any unemitted elements of @pending are passed along
in the promise to be emitted later.

If no elements are ready for emission, the function discards the head element
of the stream after inserting it into @pending. insert() takes care of insert-
ing head($s) into the appropriate place in @pending so that @pending is always
properly sorted.

If $s is exhausted, all items in @pending immediately become emittable, so
the function calls list_to_stream() to build a finite stream that contains them
and that ends with an empty tail.

Now if we’d like to generate strings in sorted order, we call cutsort() like
this:

my $sorted =

cutsort($regex3,

sub { $_[0] cmp $_[1] }, # comparator

\&cut_bylen # cutting function

);

The one piece of this that we haven’t seen is insert(), which inserts an element
into the appropriate place in a sorted array:

sub insert (\@$$) {

my ($a, $e, $cmp) = @_;

my ($lo, $hi) = (0, scalar(@$a));

while ($lo < $hi) {

my $med = int(($lo + $hi) / 2);

my $d = $cmp->($a->[$med], $e);

if ($d <= 0) {

$lo = $med+1;

} else {

$hi = $med;

.                      293

}

}

splice(@$a, $lo, 0, $e);

}

This is straightforward, except possibly for the prototype. The prototype (\@$$)

says that insert() will be called with three arguments: an array and two scalars,
and that it will be passed a reference to the array argument instead of a list of
its elements. It then performs a binary search on the array @$a, looking for the
appropriate place to splice in the new element $e. A linear scan is simpler to
write and to understand than the binary search, but it’s not efficient enough for
heavy-duty use.

At all times, $lo and $hi record the indices of elements of @$a that are
known to satisfy $a->[$lo] ≤ $e < $a->[$hi], where ≤ here represents the
comparison defined by the $cmp function. Each time through the while loop, the
function compares $e to the element of the array at the position halfway between
$lo and $hi. Depending on the outcome of the comparison, the function now
knows a new element $a->[$med]with $a->[$med]≤ $e or with $e< $a->[$med].
We can then replace either $hior $lowith $medwhile still preserving the condition
$a->[$lo] ≤ $e < $a->[$hi]. When $lo and $hi are the same, the function has
located the correct position for $e in the array, and uses splice() to insert $e

in the appropriate place. For further discussion of binary search, see Mastering
Algorithms with Perl, pp. 162–165.

     

For a more practical example of the usefulness of cutsorting, consider a program
to process a mail log file. The popular qmail mail system generates a log in the
following format:

@400000003e382910351ebf4c new msg 706430

@400000003e3829103573e42c info msg 706430: bytes 2737 from <boehm5@email.com> qp 31064 uid 1001

@400000003e38291035d359ac starting delivery 190552: msg 706430 to local guitar-tpj-regex@plover.com

@400000003e38291035d3cedc status: local 1/5 remote 2/10

@400000003e3829113084e7f4 delivery 190552: success: did_0+1+0/qp_31067/

@400000003e38291130aa3aa4 status: local 1/5 remote 2/10

@400000003e3829120762c51c end msg 706430

The first field in each line is a time stamp in tai64n format. The rest of the line
describes what the mail system is doing. new msg indicates that a new message has

294         Infinite Streams

been added to one of the delivery queues and includes the ID number of the new
message. info msg records the sender of the new message. (A message always has
exactly one sender, but may have any number of recipients.) starting delivery

indicates that a delivery attempt is being started, the address of the intended
recipient, and a unique delivery ID number. delivery indicates the outcome
of the delivery attempt, which may be a successful delivery, or a temporary
or permanent failure, and includes the delivery ID number. end msg indicates
that delivery attempts to all the recipients of a message have ended in success
or permanent failure, and that the message is being removed from the delivery
queue. status lines indicate the total number of deliveries currently in progress.

This log format is complete and not too difficult to process, but it is difficult
for humans to read quickly. We might like to generate summary reports in
different formats; for example, we might like to reduce the life of the previous
message to a single line:

706430 29/Jan/2003:14:18:30 29/Jan/2003:14:18:32 <boehm5@email.com> 1 1 0 0

This records the message ID number, the times at which the message was
inserted into and removed from the queue, the sender, the total number of
delivery attempts, and the number of attempts that were respectively successful,
permanent failures, and temporary failures.

qmail writes its logs to a file called current; when current gets sufficiently
large, it is renamed and a new current file is started. We’ll build a stream that
follows the current file, notices when a new current is started, and switches
files when necessary. First we need a way to detect when a file’s identity has
changed. On Unix systems, a file’s identity is captured by two numbers: the
device number of the device on which it resides, and an i-number which is a
per-device identification number. Both numbers can be obtained with the Perl
stat() function:

sub _devino {CODE LIBRARY
logfile-process my $f = shift;

my ($dev, $ino) = stat($f);

return unless defined $dev;

"$dev;$ino";

}

The next function takes an open filehandle, a filename, and a device and i-number
pair and returns the next record from the filehandle. If the handle is at the end
of its file, the function checks to see if the filename now refers to a different file.

.                      295

If so, the function opens the handle to the new file and continues; otherwise it
waits and tries again:

sub _next_record {

while (1) {

my ($fh, $filename, $devino, $wait) = @_;

$wait = 1 unless defined $wait;

my $rec = <$fh>;

return $rec if defined $rec;

if (_devino($filename) eq $devino) {

File has not moved

sleep $wait;

} else {

$filename refers to a different file

open $_[0], "<", $filename or return;

$_[2] = _devino($_[0]);

}

}

}

Note that if $fh and $devino are initially unspecified, _next_record will initialize
them when it is first called.

The next function takes a filename and returns a stream of records from the
file, using _next_record to follow the file if it is replaced:

sub follow_file {

my $filename = shift;

my ($devino, $fh);

tail(iterate_function(sub { _next_record($fh, $filename, $devino) }));

}

my $raw_mail_log = follow_file('/service/qmail/log/main/current');

Now we can write functions to transform this stream. For example, a quick-and-
dirty function to convert tai64n format timestamps to Unix epoch format is:

sub tai64n_to_unix_time {

my $rec = shift;

return [undef, $rec] unless $rec =˜ s/ˆ\@([a-f0-9]{24})\s+//;

[hex(substr($1, 8, 8)) + 10, $rec];

}

my $mail_log = &transform(\&tai64n_to_unix_time, $raw_mail_log);

296         Infinite Streams

Next is the function to analyze the log. Its input is a stream of log records from
which the timestamps have been preprocessed by tai64n_to_unix_time(), and
its output is a stream of hashes, each of which represents a single email message.
The function gets two auxiliary arguments, $msg and $del, which are hashes that
represent the current state of the delivery queue. The keys of $del are delivery ID
numbers; each value is the ID number of the message with which the delivery is
associated. The keys of $msg are message ID numbers; the values are structures
that record information about the corresponding message, including the time it
was placed in the queue, the sender, the total number of delivery attempts, and
other information. A complete message structure looks like this:

{

'id' => 706430, # Message id number

'bytes' => 2737, # Message length

'from' => '<boehm5@email.com>', # Sender

'deliveries' => [190552], # List of associated delivery ids

'start' => 1043867776, # Start time

'end' => 1043867778, # End time

'success' => 1, # Number of successful delivery attempts

'failure' => 0, # Number of permanently failed delivery attempts

'deferral' => 0, # Number of temporarily failed delivery attempts

'total_deliveries' => 1,# Total number of delivery attempts

}

The stream produced by digest_maillog() is a sequence of these structures. To
produce a structure, digest_maillog() scans the input records, adjusting $msg

and $del as necessary, until it sees an end msg line; at that point it knows that
it has complete information about a message, and it emits a single data item
representing that message. If the input stream is exhausted, digest_maillog()
terminates the output:

sub digest_maillog {

my ($s, $msg, $del) = @_;

for ($msg, $del) { $_ = {} unless $_ }

while ($s) {

my ($date, $rec) = @{drop($s)};

next unless defined $date;

if ($rec =˜ /ˆnew msg (\d+)/) {

$msg->{$1} = {start => $date, id => $1,

.                      297

success => 0, failure => 0, deferral => 0};

} elsif ($rec =˜ /ˆinfo msg (\d+): bytes (\d+) from (<[ˆ\>]*>)/) {

next unless exists $msg->{$1};

$msg->{$1}{bytes} = $2;

$msg->{$1}{from} = $3;

} elsif ($rec =˜ /ˆstarting delivery (\d+): msg (\d+)/) {

next unless exists $msg->{$2};

$del->{$1} = $2;

push @{$msg->{$2}{deliveries}}, $1;

} elsif ($rec =˜ /ˆdelivery (\d+): (success|failure|deferral)/) {

next unless exists $del->{$1} && exists $msg->{$del->{$1}};

$msg->{$del->{$1}}{$2}++;

} elsif ($rec =˜ /ˆend msg (\d+)/) {

next unless exists $msg->{$1};

my $m = delete $msg->{$1};

$m->{total_deliveries} = @{$m->{deliveries}};

for (@{$m->{deliveries}}) { delete $del->{$_} };

$m->{end} = $date;

return node($m, promise { digest_maillog($s, $msg, $del) });

}

}

return;

}

Now we can generate reports by transforming the stream of message structures
into a stream of log records:

use POSIX 'strftime';

sub format_digest {

my $h = shift;

join " ",

$h->{id},

strftime("%d/%b/%Y:%T", localtime($h->{start})),

strftime("%d/%b/%Y:%T", localtime($h->{end})),

$h->{from},

$h->{total_deliveries},

298         Infinite Streams

$h->{success},

$h->{failure},

$h->{deferral},

;

}

show(&transform(\&format_digest, digest_maillog($mail_log)));

Typical output looks like this:

...

707045 28/Jan/2003:12:10:03 28/Jan/2003:12:10:03 <Paulmc@371.net> 1 1 0 0

707292 28/Jan/2003:12:10:03 28/Jan/2003:12:10:06 <Paulmc@371.net> 1 1 0 0

707046 28/Jan/2003:12:10:06 28/Jan/2003:12:10:07 <Paulmc@371.net> 4 3 1 0

707293 28/Jan/2003:12:10:07 28/Jan/2003:12:10:07 <guido@odiug.zope.com> 1 1 0 0

707670 28/Jan/2003:12:10:06 28/Jan/2003:12:10:08 <spam-return-133409-@plover.com-@[]> 2 2 0 0

707045 28/Jan/2003:12:10:07 28/Jan/2003:12:10:11 <guido@odiug.zope.com> 1 1 0 0

707294 28/Jan/2003:12:10:11 28/Jan/2003:12:10:11 <guido@odiug.zope.com> 1 1 0 0

707047 28/Jan/2003:12:10:22 28/Jan/2003:12:10:23

<ezmlm-return-10817-mjd-ezmlm=plover.com@list.cr.yp.to> 1 1 0 0

707048 28/Jan/2003:12:11:02 28/Jan/2003:12:11:02

<perl5-porters-return-71265-mjd-p5p2=plover.com@perl.org> 1 1 0 0

707503 24/Jan/2003:11:29:49 28/Jan/2003:12:11:35

<perl-qotw-discuss-return-1200-@plover.com-@[]> 388 322 2 64

707049 28/Jan/2003:12:11:35 28/Jan/2003:12:11:45 < > 1 1 0 0

707295 28/Jan/2003:12:11:41 28/Jan/2003:12:11:46

<perl6-internals-return-14784-mjd-perl6-internals=plover.com@perl.org> 1 1 0 0

...

That was all a lot of work, and at this point it’s probably not clear why the stream
method has any advantage over the more usual method of reading the file one
record at a time, tracking the same data structures, and printing output records
as we go, something like this:

while (<LOG>) {

analyze current record

update $msg and $del

if (/ˆend msg/) {

print ...;

}

}

.                      299

One advantage was that we could encapsulate the follow-the-changing-file behav-
ior inside its own stream. In a more conventionally structured program, the logic
to track the moving file would probably have been threaded throughout the rest
of the program. But we could also have accomplished this encapsulation by using
a tied filehandle.

A bigger advantage of the stream approach comes if we want to reorder the
output records. As written, the output stream contains message records in the
order in which the messages were removed from the queue; that is, the output is
sorted by the third field. Suppose we want to see the messages sorted by the second
field, the time at which each message was first sent. In the preceding example
output, notice the line for message 707503. Although the time at which it was
removed from the queue (12:11:35 on 28 January) is in line with the surrounding
messages, the time it was sent (11:29:49 on 24 January) is quite different. Most
messages are delivered almost immediately, but this one took more than four
days to complete. It represents a message that was sent to a mailing list with 324
subscribers. Two of the subscribers had full mailboxes, causing their mail systems
to temporararily refuse new message for these subscribers. After four days, the
mail system finally gave up and removed the message from the queue. Similarly,
message 707670 arrived a second earlier but was delivered (to India) a second later
than message 707293, which was delivered (locally) immediately after it arrived.

The ordinary procedural loop provides no good way to emit the log entries
sorted in order by the date the messages were sent rather than by the date that
delivery was completed. We can’t simply use Perl’s sort() function, since it works
only on arrays, and we can’t put the records into an array, because they extend
into the indefinite future.

But in the stream-based solution, we can order the records with the cutsorting
method, using the prefabricated cutsorting function we have already. There’s an
upper bound on how long messages can remain in the delivery queue; after four
days any temporary delivery failures are demoted to permanent failures, and the
message bounces. Suppose we have in hand the record for a message that was
first queued on January 1 and that has been completely delivered. We can’t emit
it immediately, since the next item out of the stream might be the record for a
message that was first queued on December 28 whose delivery didn’t complete
until January 2; this record should come out before the January 1 record because
we’re trying to sort the output by the start date rather than the end date. But
we can tell the cutsorter that it’s safe to emit the January 1 record once we see a
January 5 record in the stream, because by January 5 any messages queued before
January 1 will have been delivered one way or another:

my $QUEUE_LIFETIME = 4; # Days

my $by_entry_date =

300         Infinite Streams

cutsort($mail_log,

sub { $_[0]{start} < = > $_[1]{start} },

sub { $_[1]{end} - $_[0]{end} >= $QUEUE_LIFETIME*86400 },

);

The first anonymous function argument to cutsort() says how to order the
elements of the output; we want them ordered by {start}, the date each message
was placed into the queue. The second anonymous function argument is the
cutting function; this function says that it’s safe to emit a record R with a certain
start date if the next record in the stream was for a message that was completed at
least $QUEUE_LIFETIME days after R ; any record that was queued before R would
have to be removed less than $QUEUE_LIFETIME days later, and therefore there
are no such records remaining in the stream. The output from $by_entry_date

includes the records in the preceding sample, but in a different order:

...

707503 24/Jan/2003:11:29:49 28/Jan/2003:12:11:35 <perl-qotw-discuss-return-1200-@plover.com-@[]>

388 322 2 64

... (many records omitted) ...

707045 28/Jan/2003:12:10:03 28/Jan/2003:12:10:03 <Paulmc@371.net> 1 1 0 0

707292 28/Jan/2003:12:10:03 28/Jan/2003:12:10:06 <Paulmc@371.net> 1 1 0 0

707046 28/Jan/2003:12:10:06 28/Jan/2003:12:10:07 <Paulmc@371.net> 4 3 1 0

707670 28/Jan/2003:12:10:06 28/Jan/2003:12:10:08 <spam-return-133409-@plover.com-@[]> 2 2 0 0

707293 28/Jan/2003:12:10:07 28/Jan/2003:12:10:07 <guido@odiug.zope.com> 1 1 0 0

707045 28/Jan/2003:12:10:07 28/Jan/2003:12:10:11 <guido@odiug.zope.com> 1 1 0 0

...

Even on a finite segment of the log file, cutsorting offers advantages over a
regular sort. To use regular sort, the program must first read the entire log file
into memory. With cutsorting, the program can begin producing output after
only $QUEUE_LIFETIME days worth of records have been read in.

6.6  - 

How does Perl’s sqrt() function work? It probably uses some variation of the
Newton-Raphson method. You may have spent a lot of time toiling in high school

.          -              301

to solve equations; if so, rejoice, because the Newton-Raphson method is a
general technique for solving any equation whatsoever.5

Suppose we’re trying to calculate sqrt(2). This is a number, which, when
multiplied by itself, will give 2. That is, it’s a number x such that x2 = 2, or,
equivalently, such that x2 − 2 = 0.

If you plot the graph of y = x2 − 2 you get a parabola illustrated in Figure
6.5. Every point on the parabola has x2 − 2 = y. Points on the x-axis have
y = 0. Where the parabola crosses the x-axis, we have x2 − 2 = 0, and so the
x-coordinate of the crossing point is equal to

√
2. This value is the solution, or

root, of the equation.

8

6

4

2

�2

�4

�6

�8

�4 �2 2 4

x

y

(1.4142, 0)
(2, 2)

y=x2–2

(�1.4142, 0)

 . The parabola y = x2 − 2.

5 Isaac Newton discovered and wrote about the method first, but his write-up wasn’t published until
1736. Joseph Raphson discovered the technique independently and published it in 1671.

302         Infinite Streams

The Newton-Raphson method takes an approximation to the root and pro-
duces a closer approximation. We get the method started by guessing a root.
Techniques for making a good first guess are an entire field of study themselves,
but for the parabola in Figure 6.5, any guess except 0 will work. To show that
the initial guess doesn’t have to be particularly good, we’ll guess that

√
2 = 2.

The method works by observing that a smooth curve, such as the parabola, can
be approximated by a straight line, and constructs the tangent line to the curve
at the current guess, which is x = 2. This is the straight line that touches the
curve at that point, and that proceeds in the same direction that the curve was
going. The curve will veer away from the straight line (because it’s a curve) and
eventually intersect the x-axis in a different place than the straight line does. But
if the curve is reasonably well-behaved, it won’t veer away too much, so the line’s
intersection point will be close to the curve’s intersection point, and closer than
the original guess.

The tangent line in this case happens to be the line y = 4x − 6. This line
intersects the x-axis at x = 1.5, as shown in Figure 6.6. This value, 1.5, is
our new guess for the value of

√
2. It is indeed more accurate than the original

guess.
To get a better approximation, we repeat the process. The tangent line to

the parabola at the point (1.5, 0.25) has the equation y = 3x − 4.25. This line
intersects the x-axis at 1.41667, which is correct to two decimal places.

Now we’ll see how these calculations were done. Let’s suppose our initial
guess is g, so we want to construct the tangent at (g, g2 − 2). If a line has
slope m and passes through the point (p, q), its equation is y − q = m(x − p).
We’ll see later how to figure out the slope of the tangent line without calculus,
but in the meantime calculus tells us that the slope of the tangent line to the
parabola at the point (g, g2 − 2) is 2g, and therefore that the tangent line itself
has the equation (y − (g2 − 2)) = 2g (x − g). We want to find the value of
x for which this line intersects the x-axis; that is, we want to find the value of
x for which y is 0. This gives us the equation (0 − (g2 − 2)) = 2g (x − g).
Solving for x yields x = g − (g2 − 2)/2g = (g2 + 2)/2g . That is, if our initial
guess is g, a better guess will be (g2 + 2)/2g . A function that computes

√
2 is

therefore:

sub sqrt2 {CODE LIBRARY
Newton.pm

my $g = 2; # Initial guess

until (close_enough($g*$g, 2)) {

$g = ($g*$g + 2) / (2*$g);

}

$g;

}

.          -              303

8

6

4

2

�2

�4

�6

�8

�4 �2 2 4

x

y

(1.4142, 0)
(2, 2)

(1.5, 0)

y=x2–2

y=4x–6

(�1.4142, 0)

 . The parabola y = x2 − 2.

sub close_enough {

my ($a, $b) = @_;

return abs($a - $b) < 1e-12;

}

This code rapidly produces a good approximation to
√

2, returning
1.414213562373095 after only five iterations. (This is correct to 15 decimal
places.) To calculate the square root of a different number, we do the mathematics
the same way, this time replacing the 2 with a variable n; the result is:

sub sqrtn {

my $n = shift;

my $g = $n; # Initial guess

until (close_enough($g*$g, $n)) {

$g = ($g*$g + $n) / (2*$g);

304         Infinite Streams

}

$g;

}

6.6.1 Approximation Streams

But what does all this have to do with streams? One of the most useful and inter-
esting uses for streams is to represent the results of an approximate calculation.
Consider the following stream definition, which delivers the same sequence of
approximations that the sqrtn() function would compute:

use Stream 'iterate_function';

sub sqrt_stream {

my $n = shift;

iterate_function (sub { my $g = shift;

($g*$g + $n) / (2*$g);

},

$n);

}

1;

We saw iterate_function() back in Section 6.2.2. At the time, I promised a
simpler and more interesting version. Here it is:

sub iterate_function {

my ($f, $x) = @_;

my $s;

$s = node($x, promise { &transform($f, $s) });

}

Recall that iterate_function($f, $x) produces the stream $x, $f->($x),

$f->($f->($x)),... . The preceding recursive version relies on the observation
that the stream begins with $x, and the rest of the stream can be gotten by apply-
ing the function $f to each element in turn. The & on the call to transform()

disables transform()’s prototype-derived special syntax. Without it, we’d have
to write:

transform { $f->($_[0]) } $s

which would introduce an unnecessary additional function call.

.          -              305

6.6.2 Derivatives

The problem with the Newton-Raphson method as I described it in the previous
section is that it requires someone to calculate the slope of the tangent line to
the curve at any point. When we needed the slope at any point of the parabola
g2 − 2, I magically pulled out the formula 2g. The function 2g that describes
the slope at the tangent line at any point of the parabola g2 − 2 is called the
derivative function of the parabola; in general, for any function, the related
function that describes the slope is called the derivative. Algebraic computation of
derivative functions is the subject of the branch of mathematics called differential
calculus.

Fortunately, though, you don’t need to know differential calculus to apply
the Newton-Raphson method. There’s an easy way to compute the slope of a
curve at any point. What we really want is the slope of the tangent line at a
certain point. But if we pick two points that are close to the point we want, and
compute the slope of the line between them, it won’t be too different from the
slope of the actual tangent line.

For example, suppose we want to find the slope of the parabola y = x2 − 2
at the point (2, 2). We’ll pick two points close to that and find the slope of the
line that passes through them. Say we choose (2.001, 2.004001) and (1.999,
1.996001). The slope of the line through two points is the y difference divided
by the x difference; in this case, 0.008/0.002 = 4. And this does match the
answer from calculus exactly. It won’t always be an exact match, but it will always
be close, because differential calculus uses exactly the same strategy, augmented
with algebraic techniques to analyze what happens to the slope as the two points
get closer and closer together.

It’s not hard to write code that, given a function, calculates the slope at any
point:

sub slope {

my ($f, $x) = @_;

my $e = 0.00000095367431640625;

($f->($x+$e) - $f->($x-$e)) / (2*$e);

}

The value of $e that I chose is exactly 2−20; I picked it because it was the power
of 2 closest to one one-millionth. Powers of 2 work better than powers of 10
because they can be represented exactly; with a power of 10 you’re introducing
round-off error before you even begin. Smaller values of $e will give us more
accurate answers, up to a point. The computer’s floating-point numbers have
only a fixed amount of accuracy, and as the numbers we deal with get smaller,

306         Infinite Streams

the round-off error will tend to dominate the answer. For the function $f = sub

{ $_[0] * $_[0] - 2 } and $x = 2 our slope() function produces the correct
answer (4) for values of $e down to 2−52; at that point the round-off error takes
over, and when $e is 2−54, the calculated slope is 0 instead of 4. It’s not hard
to see what has happened: $e has become so small that when it’s added to or
subtracted from $x, and the result is rounded off to the computer’s precision,
the $e disappears entirely and we’re left with exactly 2. So the calculated values
of $f->($x+$e) and $f->($x-$e) are both exactly the same, and the slope()

function returns 0.
Once we have this slope() function, it’s easy to write a generic equation

solver using the Newton-Raphson method:

Return a stream of numbers $x that make $f->($x) close to 0

sub solve {

my $f = shift;

my $guess = shift || 1;

iterate_function(sub { my $g = shift;

$g - $f->($g)/slope($f, $g);

},

$guess);

}

Now if we want to find
√

2, we do:

my $sqrt2 = solve(sub { $_[0] * $_[0] - 2 });

{ local $" = "\n";

show($sqrt2, 10);

}

This produces the following output:

1

1.5

1.41666666666667

1.41421568627464

1.41421356237469

1.4142135623731

1.41421356237309

1.4142135623731

1.41421356237309

1.4142135623731

.          -              307

At this point the round-off error in the calculations has caused the values to alter-
nate between 1.41421356237309 and 1.4142135623731.6 The correct value is
1.41421356237309504880, so our little bit of code has produced an answer that
is accurate to better than four parts per quadrillion.

If we want more accurate answers, we can use the standard Perl multi-
precision floating-point library, Math::BigFloat. Doing so requires only a small
change to the code:

use Math::BigFloat;

my $sqrt2 = solve(sub { $_[0] * $_[0] - 2 },

Math::BigFloat->new(2));

Using Math::BigFloat produces extremely accurate answers, but after only a few
iterations, the numbers start coming out more and more slowly.

Because Math::BigFloat never rounds off, every multiplication of two
numbers produces a number twice as long. The results increase in size expo-
nentially, and so do the calculation times. The third iteration produces
1.41666666666666666666666666666666666666667, which is an extremely
precise but rather inaccurate answer. There’s no point in retaining or calculating
with all the 6’s at the end, because we know they’re wrong, but Math::BigFloat
does it anyway, and the fourth iteration produces a result that has five accurate
digits followed by 80 inaccurate digits.

One solution to this is to do more mathematics to produce an estimate of how
many digits are accurate, and to round off the approximations to leave only the
correct digits for later calculations. But this requires sophisticated technique. A
simple solution is to improve the initial guess. Since Perl has a built-in square root
function that is fast, we’ll use it to generate our initial guess, which will already
be accurate to about thirteen decimal places. Any work done by Math::BigFloat

afterwards will only improve this:

my $sqrt2 = solve(sub { $_[0] * $_[0] - 2 },

Math::BigFloat->new(sqrt(2)));

The approximations still double in size at every step, and each one still
takes twice as long as the previous one, but many more of the digits
are correct, so the extra time spent isn’t being wasted as it was before.

6 Actually they’re alternating between 1.414213562373094923430016933708 and
1.414213562373095145474621858739, but who’s counting?

308         Infinite Streams

You may wait twice as long to get the answer, but you get an answer
that has twice as many correct digits. The second element of the stream
is 1.4142135623730950488016887242183652153338124600441037, of
which the first 28 digits after the decimal point are correct. The next element
has 58 correct digits. In general, the Newton-Raphson method will double the
number of correct digits at every step, so if you start with a reasonably good
guess, you can get extremely accurate results very quickly.

6.6.3 The Tortoise and the Hare

The $sqrt2 stream we built in the previous section is infinite, but after a certain
point the approximations it produces won’t get any more accurate because they’ll
be absorbed by the inherent error in the computer’s floating-point numbers. The
output of $sqrt2 was:

1

1.5

1.41666666666667

1.41421568627464

1.41421356237469

1.4142135623731

1.41421356237309

1.4142135623731

1.41421356237309

...

$sqrt2 is stuck in a loop. A process that was trying to use $sqrt2 might decide
that it needs more than 13 places of precision, and might search further and
further down the stream, hoping for a better approximation that never arrives.
It would be better if we could detect the loop in $sqrt2 and cut off its tail.

The obvious way to detect a loop is to record every number that comes out of
the stream and compare it to the items that came out before; if there is a repeat,
then cut off the tail:

sub cut_loops {

my $s = shift;

return unless $s;

my @previous_values = @_;

for (@previous_values) {

if (head($s) == $_) {

return;

.          -              309

}

}

node(head($s),

promise { cut_loops(tail($s), head($s), @previous_values) });

}

cut_loops($s) constructs a stream that is the same as $s, but that stops at the
point where the first loop begins. Unfortunately, it does this with a large time
and memory cost. If the argument stream doesn’t loop, the @previous_values

array will get bigger and bigger and take longer and longer to search. There is a
better method, sometimes called the tortoise and hare algorithm.

Imagine that each value in the stream is connected to the next value by an
arrow. If the values form a loop, the arrows will too. Now imagine that a tortoise
and a hare both start at the first value and proceed along the arrows. The tortoise
crawls from one value to the next, following the arrows, but the hare travels
twice as fast, leaping over every other value. If there is a loop, the hare will speed
around the loop and catch up to the tortoise from behind. When this happens,
you know that the hare has gone all the way around the loop once.7 If there is
no loop, the hare will vanish into the distance and will never meet the tortoise
again:

sub cut_loops {

my ($tortoise, $hare) = @_;

return unless $tortoise;

The hare and tortoise start at the same place

$hare = $tortoise unless defined $hare;

The hare moves two steps every time the tortoise moves one

$hare = tail(tail($hare));

If the hare and the tortoise are in the same place, cut the loop

return if head($tortoise) == head($hare);

return node(head($tortoise),

promise { cut_loops(tail($tortoise), $hare) });

}

7 It may not be obvious that the hare will necessarily catch the tortoise, but it is true. For details,
see Donald Knuth, The Art of Computer Programming: Volume 2, Seminumerical Algorithms,
exercise 3.1.6.

310         Infinite Streams

show(cut_loops($sqrt2)) now generates:

1

1.5

1.41666666666667

1.41421568627464

1.41421356237469

1.4142135623731

and nothing else.
Notice that the entire loop didn’t appear in the output. The loop consists of:

1.4142135623731

1.41421356237309

but we saw only the first of these. The tortoise and hare algorithm guarantees
to cut the stream somewhere in the loop, before the values start to repeat; it
might therefore place the cut sometime before all of the values in the loop have
appeared. Sometimes this is acceptable behavior. If not, send the hare around
the loop an extra time:

sub cut_loops2 {

my ($tortoise, $hare, $n) = @_;

return unless $tortoise;

$hare = $tortoise unless defined $hare;

$hare = tail(tail($hare));

return if head($tortoise) == head($hare)

&& $n++;

return node(head($tortoise),

promise { cut_loops(tail($tortoise), $hare, $n) });

}

6.6.4 Finance

The square root of two is beloved by the mathematics geeks, but normal humans
are motivated by other things, such as money. Let’s suppose I am paying off a
loan, say a mortgage. Initially I owe P dollars. (P is for “principal”, which is
the finance geeks’ jargon word for it.) Each month, I pay pmt dollars, of which
some goes to pay the interest and some goes to reduce the principal. When the
principal reaches zero, I own the house.

.          -              311

For concreteness, let’s say that the principal is $100,000, the interest rate is
6% per year, or 0.5% per month, and the monthly payment is $1,000. At the
end of the first month, I’ve racked up $500 in interest, so my $1,000 payment
reduces the principal to $99,500. At the end of the second month, the interest
is a little lower, only $99, 500 × 0.5% = $495.50, so my payment reduces the
principal by $504.50, to $98,995.50. Each month, my progress is a little faster.
How long will it take me to pay off the mortgage at this rate?

First let’s figure out how to calculate the amount owed at the end of any
month. The first two months are easy:

Month Amount owed

0 P

In the first month, we pay interest on the principal in the amount of P × .005,
bringing the total to P × 1.005. But we also make a payment of pmt dollars, so
that at the end of month 1, the amount owed is:

1 P · 1.005 − pmt

The next month, we pay interest on the amount still owed. That amount is
P × 1.005 − pmt , so the interest is (P × 1.005 − pmt) × .005, and the total is
(P ×1.005−pmt)+(P ×1.005−pmt)×0.005, or (P ×1.0052 −pmt ×1.005).
Then we make another payment, bringing the total down to:

2 P · (1.005)2 − pmt · (1 + 1.005)

The pattern continues in the third month:

3 P · (1.005)3 − pmt · (1 + 1.005 + (1.005)2)

4 P · (1.005)4 − pmt · (1 + 1.005 + (1.005)2 + (1.005)3)

This pattern is simple enough that we can program it without much trouble:

sub owed {

my ($P, $N, $pmt, $i) = @_;

my $payment_factor = 0;

for (0 .. $N-1) {

$payment_factor += (1+$i) ** $_;

}

return $P * (1+$i)**$N - $pmt * $payment_factor;

}

312         Infinite Streams

It requires a little high school algebra to abbreviate the formula.8 1 + 1.005 +
(1.005)2 + · · · + 1.005N −1 is equal to (1.005N − 1)/.005, which is quicker to
calculate:

4 P · (1.005)4 − pmt · ((1.005)4 − 1)/0.005

5 P · (1.005)5 − pmt · ((1.005)5 − 1)/0.005

6 P · (1.005)6 − pmt · ((1.005)6 − 1)/0.005

so the code gets simpler:

sub owed {CODE LIBRARY
owed my ($P, $N, $pmt, $i) = @_;

return $P * (1+$i)**$N - $pmt * ((1+$i)**$N - 1) / $i;

}

Now, the question that everyone with a mortgage wants answered: How long
before my house is paid off ?

We could try solving the equation P · (1 + i)N − pmt · (1+i)N −1
i for N ,

but doing that requires a lot of mathematical sophistication, much more than
coming up with the formula in the first place.9 It’s much easier to hand the owed()
function to solve() and let it find the answer:

sub owed_after_n_months {

my $N = shift;

owed(100_000, $N, 1_000, 0.005);

}

my $stream = cut_loops(solve(\&owed_after_n_months));

my $n;

$n = drop($stream) while $stream;

print "You will be paid off in only $n months!\n";

According to this, we’ll be paid off in 138.9757 months, or eleven and a half
years. This is plausible, since if there were no interest we would clearly have

8 It also requires a bit of a trick. Say S = 1 + k + k2 + · · · + kn−1. Multiplying both sides by
k gives Sk = k + k2 + · · · + kn−1 + kn . These two equations are almost the same, and if we
subtract one from the other almost everything cancels out, leaving only Sk − S = kn − 1 and so
S = (kn − 1)/(k − 1).

9 I’m afraid I am out of tricks.

.            313

the loan paid off in exactly 100 months. Indeed, after the 138th payment, the
principal remains at $970.93, and a partial payment the following month finishes
off the mortgage.

But we can ask more interesting questions. I want a thirty-year mortgage,
and I can afford to pay $1,300 per month, or $15,600 per year. The bank is
offering a 6.75% annual interest rate. How large a mortgage can I afford?

sub affordable_mortgage {

my $mortgage = shift;

owed($mortgage, 30, 15_600, 0.0675);

}

my $stream = cut_loops(solve(\&affordable_mortgage));

my $n;

$n = drop($stream) while $stream;

print "You can afford a \$$n mortgage.\n";

Apparently with a $1,300 payment I can pay off any mortgage up to $198,543.62
in 30 years.

6.7  

We’ve seen that the Newton-Raphson method can be used to evaluate the sqrt()
function. What about other built-in functions, such as sin() and cos()?

The Newton-Raphson method won’t work here. To evaluate something
like sqrt(2), we needed to find a number x with x2 = 2. Then we used the
Newton-Raphson method, which required only simple arithmetic to approxi-
mate a solution. To evaluate something like sin(2), we would need to find a
number x with sin−1(x) = 2. This is at least as difficult as the original problem.
x2 is easy to compute; sin−1(x) isn’t.

To compute values of the so-called “transcendental functions” like sin() and
cos(), the computer uses another strategy called power series expansion.10

A power series is an expression of the form:

a0 + a1x + a2x2 + a3x3 + · · ·

10 These series are often called Taylor series or Maclaurin series after English mathematicians Brook
Taylor and Colin Maclaurin who popularized them. The general technique for constructing these
series was discovered much earlier by several people, including James Gregory and Johann Bernoulli.

314         Infinite Streams

for some numbers a0, a1, a2, Many common functions can be expressed as
power series, and in particular, it turns out that for all x, sin(x) = x − x3/3! +
x5/5! − x7/7! + · · · . (Here a0 = 0, a1 = 1, a2 = 0, a3 = −1/3!, etc.) The
formula is most accurate for x close to 0, but if you carry it out to enough terms,
it works for any x at all. The terms themselves get small rather quickly in this
case, because the factorial function in the denominator increases more rapidly
than the power of x in the numerator, particularly for small x. For example,
0.1 − (0.1)3/3! + (0.1)5/5! − (0.1)7/7! is .09983341664682539683; the value
of sin(0.1) is .09983341664682815230. When the computer wants to calculate
the sine of some number, it plugs the number into the power series and calculates
an approximation. The code to do this is simple:

Approximate sin(x) using the first n terms of the power seriesCODE LIBRARY
sine sub approx_sin {

my $n = shift;

my $x = shift;

my ($denom, $c, $num, $total) = (1, 1, $x, 0);

while ($n--) {

$total += $num / $denom;

$num *= $x*$x * -1;

$denom *= ($c+1) * ($c+2);

$c += 2;

}

$total;

}

1;

At each step, $num holds the numerator of the current term and $denom holds the
denominator. This is so simple that it’s even easy in assembly language.

Similarly, cos(x) = 1 − x2/2! + x4/4! − x6/6! + · · · .
Streams seem almost tailor-made for power series computations, because the

power series itself is infinite, and with a stream representation we can look at as
many terms as are necessary to get the accuracy we want. Once the terms become
sufficiently small, we know that the rest of the stream won’t make a significant
contribution to the result.11

11 This shouldn’t be obvious, since there are an infinite number of terms in the rest of the stream, and
in general the infinite tail of a stream may make a significant contribution to the total. However,
in a power series, the additional terms do get small so quickly that they can be disregarded, at least
for sufficiently small values of x. For details, consult a textbook on numerical analysis or basic
calculus.

.            315

We could build a sin function that, given a numeric argument, used the
power series expansion to produce approximations to sin(x). But we can do
better. We can use a stream to represent the entire power series itself, and then
manipulate it as a single unit.

We will represent the power series a0 + a1x + a2x2 + · · · with a stream that
contains (a0, a1, a2, . . .). With this interpretation, we can build a function that
evaluates a power series for a particular argument by substituting the argument
into the series in place of x.

Since the nth terms of these power series depend in simple ways on n itself,
we’ll make a small utility function to generate such a series:

package PowSeries; CODE LIBRARY
PowSeries.pmuse base 'Exporter';

@EXPORT_OK = qw(add2 mul2 partial_sums powers_of term_values

evaluate derivative multiply recip divide

$sin $cos $exp $log_ $tan);

use Stream ':all';

sub tabulate {

my $f = shift;

&transform($f, upfrom(0));

}

Given a function f, this produces the infinite stream f (0), f (1), f (2), Now
we can define sin() and cos():

my @fact = (1);

sub factorial {

my $n = shift;

return $fact[$n] if defined $fact[$n];

$fact[$n] = $n * factorial($n-1);

}

$sin = tabulate(sub { my $N = shift;

return 0 if $N % 2 == 0;

my $sign = int($N/2) % 2 ? -1 : 1;

$sign/factorial($N)

});

$cos = tabulate(sub { my $N = shift;

return 0 if $N % 2 != 0;

316         Infinite Streams

my $sign = int($N/2) % 2 ? -1 : 1;

$sign/factorial($N)

});

$sin is now a stream that begins (0, 1, 0, −0.16667, 0, 0.00833, 0, . . .); $cos
begins (1, 0, −0.5, 0, 0.041667, . . .).

Before we evaluate these functions, we’ll build a few utilities for performing
arithmetic on power series. First is add2(), which adds together the elements of
two streams, element-by-element:

sub add2 {

my ($s, $t) = @_;

return $s unless $t;

return $t unless $s;

node(head($s) + head($t),

promise { add2(tail($s), tail($t)) });

}

add2($s, $t) corresponds to the addition of two power series. (Multiplication
of power series is more complicated, as we will see later.) Similarly, scale($s,
$c), which we’ve seen before, corresponds to the multiplication of the power
series $s by the constant $c.

mul2(), which multiplies streams element-by-element, is similar to
add2():

sub mul2 {

my ($s, $t) = @_;

return unless $s && $t;

node(head($s) * head($t),

promise { mul2(tail($s), tail($t)) });

}

We will also need a utility function for summing up a series. Given a stream (a0,
a1, a2, . . .), it should produce the stream (a0, a0 + a1, a0 + a1 + a2, . . .) of
successive partial sums of elements of the first stream. This function is similar to
several others we’ve already defined:

sub partial_sums {

my $s = shift;

my $r;

$r = node(head($s), promise { add2($r, tail($s)) });

}

.            317

One of the eventual goals of all this machinery is to compute sines and cosines.
To do that, we will need to evaluate the partial sums of a power series for a
particular value of x. This function takes a number x and produces the stream
(1, x, x2, x3, . . .):

sub powers_of {

my $x = shift;

iterate_function(sub {$_[0] * $x}, 1);

}

When we multiply this stream element-wise by the stream of coefficients that
represents a power series, the result is a stream of the terms of the power series
evaluated at a point x:

sub term_values {

my ($s, $x) = @_;

mul2($s, powers_of($x));

}

Given a power series stream $s = (a0, a1, a2, . . .), and a value $x, term_values()
produces the stream (a0, a1x, a2x2, . . .).

Finally, evaluate() takes a function, as represented by a power series, and
evaluates it at a particular value of x:

sub evaluate {

my ($s, $x) = @_;

partial_sums(term_values($s, $x));

}

And lo and behold, all our work pays off:

my $pi = 3.1415926535897932;

show(evaluate($cos, $pi/6), 20);

producing the following approximations to cos(π /6):

1
1
0.862922161095981
0.862922161095981
0.866053883415747

318         Infinite Streams

0.866053883415747
0.866025264100571
0.866025264100571
0.866025404210352
0.866025404210352
0.866025403783554
0.866025403783554
0.866025403784440
0.866025403784440
0.866025403784439
0.866025403784439
0.866025403784439
0.866025403784439
0.866025403784439
0.866025403784439

This is correct. (The answer happens to be exactly
√

3/2.)
We can even work it in reverse to calculate π :

Get the n'th term from a stream

sub nth {

my $s = shift;

my $n = shift;

return $n == 0 ? head($s) : nth(tail($s), $n-1);

}

Calculate the approximate cosine of x

sub cosine {

my $x = shift;

nth(evaluate($cos, $x), 20);

}

If we know that cos(π /6) = √
3/2, then to find π we need only solve the

equation cos(x/6) = √
3/2, or equivalently, cos2(x/6) = 3/4:

sub is_zero_when_x_is_pi {

my $x = shift;

my $c = cosine($x/6);

$c * $c - 3/4;

}

show(solve(\&is_zero_when_x_is_pi), 20);

.            319

And the output from this is:

1
5.07974473179368
3.19922525384188
3.14190177620487
3.14159266278343
3.14159265358979
3.14159265358979
. . .

which is correct. The initial guess of 1, you will recall, is the default for solve().
Had we explicitly specified a better guess, such as 3, the process would have
converged more quickly; had we specified a much larger guess, like 10, the
results would have converged to a different solution, such as 11π .

6.7.1 Derivatives

We used slope() to calculate the slope of the curve cos2(x/6) − 3/4 at various
points; recall that slope() calculates an approximation of the slope by picking
two points close together on the curve and calculating the slope of the line
between them. If we had known the derivative function of cos2(x/6) − 3/4, we
could have plugged it in directly. But calculating a derivative function requires
differential calculus.

However, if you know a power series for a function, calculating its derivative
is trivial. If the power series for the function is a0 + a1x + a2x2 +· · · , the power
series for the derivative is a1 + 2a2x + 3a3x2 + · · · . That is, it’s simply:

sub derivative {

my $s = shift;

mul2(upfrom(1), tail($s));

}

If we do:

show(derivative($sin), 20);

we get exactly the same output as for:

show($cos, 20);

demonstrating that the cosine function is the derivative of the sine function.

320         Infinite Streams

6.7.2 Other Functions

Many other common functions can be calculated with the power series method.
For example, Perl’s built-in exp() function is:

$exp = tabulate(sub { my $N = shift; 1/factorial($N) });

The hyperbolic functions sinh() and cosh() are like sin() and cos() except
without the extra $sign factor in the terms. Perl’s built-in log() function is
almost:

$log_ = tabulate(sub { my $N = shift;

$N==0 ? 0 : (-1)**$N/-$N });

This actually calculates log(x + 1); to get log(x), subtract 1 from x before
plugging it in. (Unlike the others, it works only for x between −1 and 1.)
The power series method we’ve been using won’t work for an unmodified log()

function, because it approximates every function’s behavior close to 0, and log(0)
is undefined.

The tangent function is more complicated. One way to compute tan(x) is
by computing sin(x)/ cos(x). We’ll see another way in the next section.

6.7.3 Symbolic Computation

As one final variation on power series computations, we’ll forget about the num-
bers themselves and deal with the series as single units that can be manipulated
algebraically. We’ve already seen hints of this earlier. If $f and $g are streams that
represent the power series for functions f (x) and g (x), then add2($f,$g) is the
power series for the function f (x) + g (x), scale($f,$c) is the power series for
the function c · f (x), and derivative($f) is the power series for the function
f ′(x), the derivative of f.

Multiplying and dividing power series is more complex. In fact, it’s not
immediately clear how to divide one infinite power series by another. Or even,
for that matter, how to multiply them. mul2() is not what we want here, because
algebra tells us that (a0 + a1x + · · ·) × (b0 + b1x + · · ·) = a0b0 + (a0b1 +
a1b0)x + · · · , and mul2() would give us a0b0 + a1b1x + · · · instead.

Our regex-string generator comes to the rescue: Power series multiplication
is formally almost identical to regex concatenation. First note that if $S repre-
sents some power series, say a0 + a1x + a2x2 + · · · then tail($S) represents

.            321

a1 + a2x + a3x2 + · · · . Then:

S = a0 + a1x + a2x2 + a3x3 + · · ·
= a0 + x · (a1 + a2x + a3x2 + · · ·)

= head(S) + x · tail(S)

Now we want to multiply two series, $S and $T:

S = head(S) + x tail(S)

T = head(T) + x tail(T)

———————————————

S · T = head(S)head(T) + x head(S)tail(T)

+ x head(T)tail(S) + x2tail(T)tail(S)

= head(S)head(T) + x (head(S)tail(T) + head(T)tail(S)

+ x (tail(T)tail(S)))

The first term of the result, head(S) * head(T), is simply the product of two
numbers. The rest of the terms can be found by summing three series. The first is
head(S) * tail(T), which is the tail of T scaled by head(S), or scale(tail($T),
head($S)). The second is head(T) * tail(S), which is similar. The last term, x
* tail(S) * tail(T), is the product of two power series and can be computed
with a recursive call; the extra multiplication by x just inserts a 0 at the front of
the stream, since x · (a0 + a1x + a2x2 + · · ·) = 0 + a0x + a1x2 + a2x3 + · · · .

Here is the code:

sub multiply {

my ($S, $T) = @_;

my ($s, $t) = (head($S), head($T));

node($s*$t,

promise { add2(scale(tail($T), $s),

add2(scale(tail($S), $t),

node(0,

promise {multiply(tail($S), tail($T))}),

))

}

);

}

322         Infinite Streams

For power series, we can get a more efficient implementation by optimizing
scale() slightly:

sub scale {

my ($s, $c) = @_;

return if $c == 0;

return $s if $c == 1;

transform { $_[0]*$c } $s;

}

To test this, we can try out the identity sin2(x) + cos2(x) = 1:

my $one = add2(multiply($cos, $cos), multiply($sin, $sin));

show($one, 20);

1 0 0 0 0 0 0 0 4.33680868994202e-19 0 0 0 0 0 0 0 0 0 6.46234853557053e-27 0

Exactly 1, as predicted, except for two insignificant round-off errors.
We might like to make multiply() a little cleaner and faster by replacing

the two calls to add2() with a single call to a function that can add together any
number of series:

sub sum {

my @s = grep $_, @_;

my $total = 0;

$total += head($_) for @s;

node($total,

promise { sum(map tail($_), @s) }

);

}

sum() first discards any empty streams from its arguments, since they won’t
contribute to the sum anyway. It then adds up the heads to get the head
of the result and returns a new stream with the sum at its head; the tail
promises to add up the tails similarly. With this new function, multiply()

becomes:

sub multiply {

my ($S, $T) = @_;

my ($s, $t) = (head($S), head($T));

node($s*$t,

.            323

promise { sum(scale(tail($T), $s),

scale(tail($S), $t),

node(0,

promise {multiply(tail($S), tail($T))}),

)

}

);

}

The next step is to calculate the reciprocal of a power series. If $s is the power
series for a function f (x), then the reciprocal series $r is the series for the function
1/f (x). To get this requires a little bit of algebraic ingenuity. Let’s suppose that
the first term of $s is 1. (If it’s not, we can scale $s appropriately, and then scale
the result back when we’re done.)

r = 1/f (x)

r = 1/s

r = 1/(1 + tail(s))

r · (1 + tail(s)) = 1

r + r · tail(s) = 1

r = 1 − r · tail(s)

And now, amazingly, we’re done. We now know that the first term of $r must
be 1, and we can compute the rest of the terms recursively by using our trick of
defining the $r stream in terms of itself:

Works only if head($s) = 1

sub recip {

my ($s) = shift;

my $r;

$r = node(1,

promise { scale(multiply($r, tail($s)), -1) });

}

The heavy lifting is done; dividing power series is now a one-liner:

Works only if head($t) = 1

sub divide {

my ($s, $t) = @_;

324         Infinite Streams

multiply($s, recip($t));

}

$tan = divide($sin, $cos);

show($tan, 10);

0 1
0 0.333333333333333
0 0.133333333333333
0 0.053968253968254
0 0.0218694885361552

My Engineering Mathematics Handbook12 says that the coefficients are 0, 1, 0,
1/3, 0, 2/15, 0, 17/315, 0, 62/2835, . . . , so it looks as though the program is
working properly. If we would like the program to generate the fractions instead
of decimal approximations, we should download the Math::BigRat module from
CPAN and use it to initialize the factorial() function that is the basis of $sin
and $cos.

Math::BigRat values are infectious: if you combine one with an ordinary
number, the result is another Math::BigRat object. Since the @fact table is initial-
ized with a Math::BigRat, its other elements will be constructed as Math::BigRats
also; since the return values of fact() are Math::BigRats, the elements of $sin
and $cos will be too; and since these are used in the computation of $tan, the
end result will be Math::BigRat objects. Changing one line in the source code
causes a ripple effect that propagates all the way to the final result:

my @fact = (Math::BigRat->new(1));

sub factorial {

my $n = shift;

return $fact[$n] if defined $fact[$n];

$fact[$n] = $n * factorial($n-1);

}

The output is now:

0 1 0 1/3 0 2/15 0 17/315 0 62/2835

12 Jan J. Tuma, McGraw-Hill, 1970.

