Midterm Exam Key

CSE 110

21 July 1992

1 Tracing

1.1 10 Points

Since the value of name is a pointer to the first element (the 5) of the array
name, p now points to the first element.

Similarly, since the value of name is a pointer to an element of an array,
name + 1 points to the next element, so q now points to the second element,
the 23.

So the first printf prints out 5 5 23.

* (p++) says to get what p points to, throw it away, and then bump up the
value of p. To bump up the value of a pointer means to make it point to the
next element of the array, so p now points to the second element of name, the 23.
The * here is a total red herring—p++ alone would have done the same thing,.

(*q)++ says to get what q points to, throw it away, and then bump it up by
1. q was pointing to the second element of name, the 23, so that element gets
bumped up to 24. Note that the value of q didn’t change: it’s still pointing to
the same place; rather, the value stored in that place changed. The * here was
not a red herring because g++ means to bump up q, rather than what q points
to.

In any case, Since p was pointing to the second element of the array name,
which is now 24 instead of 23, *p is 24. q[0] is completely identical with *(q
+ 0) and so is synonymous with *q, whose value is 24.

So the second printf prints 24 24.

1.2 10 Points

t starts at 4.

The condition in the while statement is false if t-1 is zero, true otherwise.
So the while loop will coninue until t becomes 1. It’s not 1 yet, so we go into
the loop.

We print 4.

The condition in the if statement is false if t%3 is zero, true otherwise.

t%3 is the remainder when t is divided by 3, and so is 0 if and only if t is a
multiple of 3. So when t is a multiple of 3, we take the else clause; otherwise
we take the if clause.

First time through, t is not a multiple of 3, so we take the if part of the
statement and t gets the value 9.

We print 9.

Second time through, t is a umltiple of 3, so we take the else clause. t gets
the value 3.

We print 3.

Second time through, t is a umltiple of 3, so we take the else clause. t gets
the value 1.

Now the while condition, t-1, is zero (false) so we exit the loop. that’s the
end of the program.

1.3 10 Points

a gets 5, b gets 23. We print 5 23.
We call scramble. x gets 23 and y gets a pointer to a, whose value is 5.

Inside of scramble, we print 23 5. Then temp gets 24, x gets 5, and *y gets
24. Since y is pointing to a, this actually changes the value of a to 24. We then
print 5 24. Then we return from scramble; x and y are destroyed.

We print the values of a and b. a was changed by scramble to 24, but
scramble couldn’t possibly change b, because it didn’t know where b was, so b
must still be 23. We print 24 23.

We call scramble. x gets 24 and y gets a pointer to b, whose value is 23.

Inside of scramble, we print 24 23. Then temp gets 25, x gets 23, and *y
gets 25. Since y is pointing to b, this actually changes the value of b to 25. We
then print 23 25. Then we return from scramble; x and y are destroyed.

We print the values of a and b. b was changed by scramble to 25, but
scramble couldn’t possibly change a, because it didn’t know where a was, so a
must still be 24. We print 24 25.

2 Writing Code

These are sample solutions; yours will of course be at least a little different.

2.1 10 Points

long int pow(int n, int p)
{

long int power = 1;

for (; p; p—-)
power *= n,

return power;

}

I can’t help but show you another solution which is less srtaightforard, but
much, much faster. If p is 1,000, then the loop in the program above executes
1,000 times. But the loop in the program below gets the same answer and only
executes 10 times.

long int pow2(int n, int p)

{
/* Has value n"(27i) the i’th time through the loop */
long int np = n;
long int answer = 1;
while (p) {
if (ph2)
answer *= np;
P = p/2;
np *= np; /* np had n~(2°1i), now has n~ (27 (i+1)). */
}
return answer;
}

2.2 20 Points

void strrev(char *s)

{
char xe;
int left=0; /* Count of characters left to swap */
char temp; /* For swap */

/* If length of string is less than 2, don’t bother.
* Note short-circuiting here---it’s VERY IMPORTANT.
x If s has length O, so that s[0] == ’\0’, it’s ESSENTIAL that the
* computer does NOT go and try to look at s[1] anyway, because that’s
* off the end of the array. */
if (s[0] == ’\0’ || s[1] == ’\0’)
return;

/* e starts at string end, s at beginning. We march s forward
and e backwards, simultaneously, swapping the characters that
e and s point to. Thus the first character swaps with the last,
the second with the next-to-last, and soforth. */

/* First, point e at end of s and compute length of s: */

for (e=s; *e !'= ’\0’; e++)

left++;
/* e now points to NUL character at end of s. left is the number of
characters we have to swap. */

e-—;
/* e now points at last character in s. */

while (left > 1) { /* If there’s only one character left,
it’s in the middle of the string anyway,
so stop. */

temp = *s; *s = *e; *e = temp; /* Swap characters at beginning and end */
; /* Move towards middle of string */
left -= 2; /* two fewer characters to swap. */

}

s++; e—-

2.3 20 Points

int get_int(int min, int max, char *prompt)

{
int response; /* User’s resposnse */
int c;

do {
printf ("%s", prompt);
while (scanf(")d", &response) != 1)
/* Discard non-numeric input up through next white space. */
while ((c = getchar()) != 7 7 && c !'= ’\t’ && c != ’\n’)
/* nothing */ ;

/* When we’re out of the while loop, ‘response’ definitely has
some integer value in it. */

} while (response < min || response > max);

return re sponse;

}

3 Debugging

3.1 5 Points

The specific bug I had in mind was this: If getline returns the string "%s %d
%s %d %s %d %s %d’’, then printf will see the %s and %ds, and will expect to
receive eight more arguments, four <pointer to char>s and four <int>s. They
won’t be there, of course, because we didn’t pass them, and so printf will get
garbage values instead. printf will print out garbage <int> values for the %d

conversions. The garbage <pointer to char>s will tell printf to go looking for
string data in all sorts of unlikely and random places, some of which will be full
of garbage and others of which will not exist and cause a program failure when
printf tries to look at them.

The correct program has printf ("%s", s); instead of printf(s);.

Although this was the answer I had in mind, I awarded credit for any rea-
sonable bug that could possibly cause the behavior I described. One answer I
thought of after I wrote the problem, but which nobody turned in, was that
getline might be unable to get enough memory to store the input line, but it
has to return a pointer anyway. If it returns a garbage pointer we’re hosed. It
should return NULL under these circumstances, but we failed to check for that,
and so we’re hosed that way too.

3.2 5 Points

It’s better to write NUMBER_OF NOSTRILS instead of putting 2’s all over your
program because it comunicates to the person reading the code just what the 2
is supposed to represent, and distinguishes it from other 2’s such as those that
represent completely different things, such as the number of rabbits in a brace.
(RABBITS_IN_BRACE.

If you write NUMBER_OF NOSTRILS * AVERAGE HATRS PER NOSTRIL it’s ob-
vious what you’re computing; on the other hand, the number 1346 doesn’t
communicate anything.

3.3 5 Points

When a function is called, all its local variables, including the parameter vari-
ables that hold its arguments, are created from scratch and initialized with the
appropriate values. Parameter variables are initialized with the values of the
arguments the function was passed. So var here is created fresh when set_to_57
is called, initialized with the argument that the caller passed in, and destroyed
again when set_to_57 returns. var is not the variable that the caller wanted to
change; it is a different variable which is initialized with the same value.

Thus p points to var itself, and not to the variable that the caller wanted
to change. The statement *p = 57 changes the value of the variable tt var, but
not the value of the variable that the caller wanted to change. When set_to_57
returns, var is destroyed anyway, so this function still doesn’t do anything.

3.4 5 Points

The problem here is very simple. Since 9 and 5 are both <int>s, the / in the
expression (9/5) means integer division, and to drop fractions from the result.
Thus (9/5) means 1, and not 1.8. To fix the problem, change (9/5) to 1.8.

