CSE 110 Midterm Exam

Mystery Instructor

21 July, 1992

Tracing: 30 pts

10 pts

10 pts

10 pts

Writing Code: 50 pts

10 pts

20 pts

20 pts

Debugging: 20 pts

5 pts

5 pts

5 pts

5 pts

Total 100 pts

Welcome to the exam.

I will award partial credit for partially correct answers that show thought or
insight. If you can’t satisfy one of the requirements of a programming problem,
ignore that part and work on writing a good program that satisfies the other
requirements. It’s much better to turn in a program that does a few things well
than it is to turn in a program that does everything badly.

Make sure to make it clear whhich parts of the things you write are the ones
I should grade. Be sure to label each answer with a number of the problem it’s
the answer to.

1 Tracing

1.1 10 Points

What does this program fragment print?

int name[]={5, 23, 119%};
int *p, *q;

P = name;
q = name + 1;
printf("%d %d %d\n", xname, *p, *q);

*(p++) ;
(*xq)++;
printf("%d %d\n", *p, ql[01);

What are the contents of the array name when this code is finished?

1.2 10 points

What does this program print?

#include <stdio.h>

int main(void)

{
int t = 4;

while (t-1) {
printf ("%d\n", t);
if (t%3)
t = 2%t + t%3;
else
t /= 3;

return 0;

1.3 10 points
What does this program print?

#include <stdio.h>
void scramble(int x, int *y);

int main(void)

{
int a=5, b=23;

printf ("%d %d\n", a, b);
scramble(b, &a);
printf ("%d %d\n", a, b);
scramble(a, &b);
printf ("%d %d\n", a, b);

return 0;

}

void scramble(int x, int *y)
{

int temp;

printf ("%d %d\n", x, *y);
temp = x + 1;

X = *y;
*xy = temp;
printf ("%d %d\n", x, *y);

2 Writing Code

2.1 10 points

Suppose we want to compute the value of 3%, which is 3-3-3-3, or 81. C,
unlike some languages, has no operator for this, so we’ll write a function. Write
the function pow, which accepts an integer n and a non-negative integer p, and
which computes and returns the value of n raised to the p power, or n?. Have
pow return a <long int> value, since the return values are likely to be large.

2.2 20 points

Write the function strrev, whose argument is a string, and which reverses its
argument in place. That means that if we do:

char word[] = "Foo";

printf ("%s\n", word);
strrev(word) ;

printf ("%s\n", word);

the output should be Foo, followed by ooF.

2.3 20 points

Write a function get_int which accepts three arguments: min and max, which
are <int>s, and prompt, which is a string. get_int should print the string
prompt to prompt the user to enter numeric input, and try to read an <int>
value from the user. The input must be between min and max, inclusive. get_int
should repeatedly prompt and get input until the user enters an integer between
min and max. get_int should handle non-numeric input gracefully. When the
user finally enters a valid input, get_int should return that value as its return
value.

3 Debugging

3.1 5 points

Suppose that getline is a function which reads input stream up to a newline
character, somehow finds enough space in memory (an <array of char>) to
store the line there, stores the line in the space, and returns a pointer to the
first character in the space. Suppose also that getline somehow terminates the
program if it reaches EOF.

Let’s use getline to write a program which copies its input, a line at a time,
to the screen:

char * getline(void);
int main(void)
{

char *s;

while(1) {
s = getline();
printf(s);
}
}

This program, as written, has a very bad bug that will cause undefined
behavior under certain circumstances. (Typically the program’s behavior under
these circumstances will be garbage output or immediate termination.)

Find the bug, explain the circumstances under which it occurs, and write
correct code to replace the buggy code above.

3.2 5 points

Dafydd Painter, a world-famous nostrilologist, is writing C programs to help
him with his work. In one of them he has the directive

#define NUMBER_OF _NOSTRILS 2

He explains: “This constant represents the number of nostrils possessed by
the typical human being. It appears many places in my program. I represented
the number of nostrils with a manifest constant so that if the value ever changes,
it’ll be easy to change the code.”

Of course that’s silly, because we don’t expect the typical number of nostrils
to change. Nevertheless, there is a good reason for #define’ing NUMBER_OF_NOSTRILS.
What is it?

3.3 5 points

Farina Granville, noted quinquagintaseptologist, tried to write a function that
would set the value of a variable to 57:

void set_to_57(int var)
{
var = 57;

}

Of course, it didn’t work. You explained to her that in order for the function
to change the value of a variable, it must know where that variable is, and so
Farina will have to pass the address of the variable she wants to change into the
function set_to_57.

Farina is obstinate: “I don’t want to pass in a pointer,” she says. “People
shouldn’t have to know about pointers to use this simple function. I'll have the
function itself get the address once it’s called.” Then she writes this:

void set_to_57(int var)

{
int *p; /* Address of argument */
p = &var;
*p = b7;

}

Does this work? If so, how? If not, why not?

3.4 5 points

Kelvin R. Réaumur, a noted temperaturologist, wants to write a function which
accepts a Celsius temperature as an argument and which returns the equivalent

Fahrenheit temperature. The formula for converting from degrees Celsius to

degrees Fahrenheit is:

9
°F=°C-- +32
5+

Here is what Dr. Réaumur tried:

double celsius_to_fahrenheit(double c)

{
double f;

f =c *x (9/5) + 32;
return f;

}

First, Dr. Réaumur tested the function by passing in 0, the Celsius freezing
point of water, and it correctly returned 32, the Fahrenheit freezing point of
water. Heartened, he then tried it on 37, which is normal human body temper-
ature, but the return value was 69, instead of 98.6 as it ought to have been.

What is wrong with this function? Fix it.

