
Lecture 4

CSE 110

6 July 1992

1 More Operators

C has many operators. Some of them, like +, are binary, which means that they
require two operands, as in 4 + 5. Others are unary, which means they require
only one operand. We’ll see an example of this in section 3.3.

1.1 Arithmetic

Arithmetic operators include +, -, *, and / for addition, subtraction, multipli-
cation, and division. Division is a little odd: Its semantics change depending on
the types of its operands. If both operands are <int>s, then / represents inte-
ger division, in which the fractional part of the result is discarded. For example,
the value of the expression 13/5 is 2.

% denotes the modulus operator: If a and b are integer expressions, then
a%b is the remainder when a is divided by b. For example, the value of the
expression 13 % 5 is 3, because 3 is the remainder when you divide 13 by 5. If
one of the operands is an expression whose value isn’t of integer type, that’s an
error and the compiler won’t compile the program.

1.2 Assignment

+= is an assignment operator. Like =, its left operand must be an lvalue. x += 2
means the same thing as x = x + 2. It’s more natural to think “Add 2 to x”
and to write x += 2; than it is to think “Get x, add 2, and put it back.” and
write x = x + 2;. Furthermore, in an expression like

yyval[yypv[p3+p4] + yypv[p1+p2]] += 2

1

CSE 110 Lecture Notes Mark–Jason Dominus 2

the assignment operator makes the code easier to understand, since the reader
doesn’t have to check painstakingly that two long expressions are the same, or
to wonder why they’re not.1

Similarly, there are -=, *=, /=, %= operators, all defined analogously.

1.3 Increment and Decrement

Adding one to something is such a common operation that there’s a special
name for it and yet another notation for it. Adding 1 to a quantity is called
incrementing it. There’s a special increment operator, ++. If we write x++ or
++x in an expression, then, sometime before the computer executes the next
statement, it will add 1 to the value stored at x.2

The values of x++ and ++x differ, however: if x is 12, then the value of
x++ is 12 and the value of ++x is 13. The notion is that if you use ++x, the
compiler increments x before getting its value, and if you use x++, the compiler
increments x after geting its value. So if the value of x is 119, then after

y = x++ ;

y would be 119 and x would be 120, but after

y = ++x ;

y would be 120 and x would be 120.

When the compiler actually chooses to do the increment is None of Your
Business, as long as the increment happens before the next statement.3

Question: What happens if x is 119, and we do:

y = x++ + x++ ;

? Depending on when the incrementing actually happens, y might get 238,
or 239, right? Wrong. For various technical reasons the standard says that if
you try to modify the same object twice in one statement,4 you get undefined
behavior—the compiler is allowed to do whatever it likes, including nothing,
printing a warning, erasing itself, or teleporting elephants into the room. Simi-
larly

1I swiped this example from The C Programming Language, by Kernighan and Ritchie.
2Of course, when we say “the value stored at x,” we are implying that x is an lvalue—you

can’t do 4++ to increment the value of 4; the compiler will complain.
3Actually it has to happen before the next sequence point . We know about two kinds of

sequence points: semicolons are sequence points, and also there is a sequence point just before
every function call.

4Really it says twice without a sequence point in between.

Copyright c©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark–Jason Dominus 3

x = x++ ;

is undefined. On the other hand, if x is 2, then

y = x * x++ ;

is perfectly legal, (x and y are each modified only once before the end of the
statement) and might assign y the value 4 or the value 6, depending on whether
the compiler does the increment before or after it evaluates the first x. In general
it’s best to avoid such situations.

There is a -- operator, which is just like ++, except that it subtracts 1 instead
of adding 1. This is called decrementing .

1.4 Precedence

Consider this expression:

2 * 3 + 4

does the compiler do 2 * 3 first and then add 4, yielding 10? Or does it do 3
+ 4 first and then multiply by 2, yielding 14?

The rules are consistent with regular mathematics: Multiplication and di-
vision (meaning *, /, and %) happen before + and -. So the example above
evaluates to 10.

Assignment happens way late, after almost everything else, because if you
write

x = y + 4 ;

you never ever mean that you want to store the value of y in x and then add 4
to that result—you always mean that you want to add 4 to the value in y and
then store that result into x.

As in mathematics, expressions in parentheses ((and)) get evaluated first.
So the value of

2 * (3 + 4)

is 14.

++ and -- have higher precedence than most other things, including every-
thing we’ve seen so far. That’s so that the ++ in y * x++ applies just to the x
and not to the y * x.

Copyright c©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark–Jason Dominus 4

2 The Preprocessor

Before the compiler starts in on its work in earnest, it transforms your program
a little. On some systems this transformation is done by a separate program,
called a preprocessor , but in Turbo C++, the preprocessor is built into the
compiler. There are three important transformations and a few unimportant
ones that we won’t discuss.

2.1 Macros

If your source code contains a line like

#define PI 3.141592654

the preprocessor defines a macro. What this means is that from now on, every
time it sees the symbol PI, it will replace it with the sequence 3.141592654.
The compiler proper will never find out about PI at all; as far as it’s concerned,
you wrote out 3.141592654 in full every time.

You can use this for three things:

• You can use it to clarify the code, by writing things like PI, rather than
3.141592654 all over the place.

• You can use it to set up manifest constants that might change over time.
For example, suppose you are writing accounting software for an insur-
ance company; the medical insurance deductible is $200, and you want to
compute the payment. You could write

payment = claims - 200 ;

but then if the deductible ever changed, you’d have to go and find all the
200’s in your code and change every one. Worse, it might be that not
every 200 is actually a deductible—you’d have to decide which ones to
change. It’s much better to do

#define DEDUCTIBLE 200

and then you can write

payment = claims - DEDUCTIBLE ;

and if you need to change the deductible, you just change it in the #define
directive and nowhere else.

• You can use the macro facility to make your code into an unreadable
horror. We will not see an example of how to do this.

Copyright c©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark–Jason Dominus 5

Conventionally the names we give to macros contain only capital letters.

2.2 Include Files

If you write

#include <file.h>

the compiler immediately pauses what it was doing, seeks out a header file
called file.h in some standard place,5 and pretends that the entire contents of
that file appeared in your source file in place of the #include directive. If the
compiler doesn’t find file.h in any of the standard places, it complaints.

One of the good things about C is that you can have a program whose source
lives in more than one file; then if you make changes to one file you don’t have to
recompile all the others to make an executable. But if there’s some information
they need to share, you can put it in one header file and have all of the source
files #include it; again, if the information changes, you only need to change the
one copy in the header file instead of going around and changing each source
file.

Similarly, when you want to use a library function like printf, there might
be information you need to give to the compiler about that function. The people
who wrote printf can put whatever information is necessary into a header file,
and then you can include the header file in your program before you use printf.
In fact, in order to use printf, you have to #include the header file stdio.h,
or else you get undefined behavior.6

If you write #include "file.h" instead of #include <file.h>, the prepro-
cessor looks for file.h in the current directory before it looks in the standard
places.

Header files don’t have to have a .h extension, but they always do.

2.3 Comments

The preprocessor provides a facility for including explanatory text, called com-
ments, into your program, without confusing the compiler. The rule is this:
The sequences /* and */ delimit comments. The preprocessor replaces the /*,

5Just what place this is is implementation defined , which means that it’s well-defined, and
that it must be documented, but it differs from system to system.

6Our square program from Thursday had undefined behavior for this reason. Fortunately,
it did the right thing anyway.

Copyright c©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark–Jason Dominus 6

the */, and everything in between with blank space, which the compiler ignores.

It’s too early for an enormous rant about the importance and proper style
of comments, but we’ll have several later.

3 Conditions

If a program did the same thing every time we ran it, it wouldn’t be useful. We
have to have a way to perform certain actions only when certain conditions are
true.

3.1 The if Statement

The if statement has this form:

if (condition) statement

The condition is just an expression. We say that the condition is false if the
value of the expression is zero, and we say that the condition is true otherwise.
To execute an if statement, the computer first evaluates the expression to
decide if the condition is true or not. If the condition is true, the computer
executes the statement. Otherwise, it doesn’t.

The statement could be a compound statement, or it could even be another
if statement.

3.2 Relational Operators

C provides operators for comparing numbers. The operator == tests two expres-
sions for equality, for example. The expression a == b has the value 0 if a and
b are not equal and 1 if they are equal. So we can write

if (a == b)
printf("a and b are equal\n");

If a and b are equal, the expression a == b evaluates to 1, so the condition is
true, and the printf statement gets executed. But otherwise, a == b evaluates
to 0, so the condition is false and the printf is not executed.

a != b is true when the value of expression a is not equal to the value
of expression b. Similarly, we have <, >, <=, and >=, for testing whether one

Copyright c©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark–Jason Dominus 7

expression’s value is less than another’s, greater than another’s, less than or
equal to another’s, or greater than or equal to another’s.

Relational operators have low precedence, just before assignments, but after
arithmetic.

3.3 Boolean Operators

Suppose we want the user to enter an integer between 1 and 10, inclusive. We
want to write some code to print a rude message if the user didn’t do what we
wanted. Suppose the user’s number is stored in the variable x Then we could
write

if (x < 1)
<print rude message> ;

if (x > 10)
<print rude message> ;

but then the code to print the rude message is the same both times. That’s
bad, because someday someone is going to change one and not the other, and
then the program will have different behavior where it used to have the same
behavior; or else someday both statements might break7 and someone might fix
only one of them by mistake. A principal rule of programming is to never ever
have two pieces of code to do the same thing. Fortunately there’s a better way
to accomplish what we want:

if (x<1 || x>10)
<print rude message> ;

|| reads as ‘or’, so we say “if x is less than 1 or x is greater than 10...”. ||
requires two operands, and an expression with an || operator is true if either
of its operands are true, false if neither is true.

|| has a special property: it short-circuits. In the example above, suppose
the value of x is 0. The computer compares x with 1, and finds that x < 1 is
true, and so we already know that the rude message will be printed. There’s no
longer any reason to computer whether or not x > 10 is true; either way we’ll
print the message. And in fact in C when the computer is evaluating an ||
expression, if the left-hand operand is true, then the computer never evaluates
the right-hand one at all.

7Maybe because the print function changed or something.

Copyright c©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark–Jason Dominus 8

Similarly, there’s a && operator, which is pronounced ‘and’. For example:

if (x>=1 && x<=10)
<print polite message> ;

“If x is greater than or equal to 1 and x is less than or equal to 10, then print
the polite message.” An expression with && is true if both its operands are true,
false otherwise. && also short-circuits, so if x is 0 in the example above, then the
computer will only bother to evaluate the x >= 1 part above; since that part
is false, it already knows that the whole && expression is false, and there’s no
point in evaluating the x <= 10 part.

|| and && are called logical operators because they operate on logical con-
ditions such as x < 10, rather than on raw numbers like 12. There is one
other logical operator: !, pronounced not . ! is a unary operator; it takes only
one operand. When the computer wants to evaluate something like !x , it first
evaluates x , and then if x is true, !x is false, and vice-versa.

! has higher precedence than anything else we’ve seen yet. && and || have
lower precedence than anything except assignment. && has higher precedence
than ||, which is consistent with conventional mathematics.89

8There is a table of operator precedence in your text, on pages 690–691.
9Incidentally, && and || are both sequence points.

Copyright c©1992 Mark-Jason Dominus All rights reserved.

