Lecture 12

CSE 110

20 July 1992

Today we’ll cover the things that you still don’t know that you need to know
in order to do the assignment.

1 The NULL Pointer

For each pointer type, there is one special value of that type which repre-
sents a pointer which does not point anywhere at all. This value is called
the NULLpointer. The NULL pointer has one and only one interesting property:
If z is an object of type <foo>, and therefore &z is pointer to the object x, with
type <pointer to foo>, then the value of &z is not the NULL pointer.

The way you represent the NULL pointer in your code is by writing NULL.
NULL is actually a macro, but we won’t discuss what it’s a macro for until later,
because it’s confusing.

Caution: To not confuse the NULL pointer with the NUL character. The NULL
pointer is a pointer, which happens not to point anywhere. The NUL character
is a character, which is conventionally used to mark the end of a string. It’s
unfortunate that the names are so similar, but the two things have nothing at
all to do with one another.

Many functions which return pointer values return the NULL pointer to in-
dicate that something went wrong. For example, you might have a function,
malloc, which takes an argument n, somehow finds n contiguous bytes of space
on the backboard, reserves them, and returns a pointer to the first byte. malloc
could return the NULL pointer to indicate that there weren’t n free bytes of space
left on the blackboard. You could check the return value from malloc to see if
you had run out of space:

CSE 110 Lecture Notes Mark—Jason Dominus 2

char xbuf;

buf = malloc(1000);

if (buf == NULL) {
printf ("Out of memory.\n");
abort();

}

You know that if malloc succeeded in finding the memory it was looking
for and returned a pointer to that memory, the value of that pointer would be
different from NULL. If the return value compares equal to NULL, we know that
malloc didn’t succeed.

2 Input Sources and Output Sinks

When you call an input function such as scanf or getchar, the input comes
from a place called the standard input. Normally, the standard input it attached
to the keyboard so that scanf and getchar read from the keyboard.

If you run your program under MS-DOS, you can arrange to have the stan-
dard input connected somewhere else, such as to a file. For example, to run
the command ‘foo’ with the standard input connected to a file, you enter the
command line foo < input_file. When foo calls scanf or getchar, the data
that scanf or getchar reads comes from the file input_file instead of from
the keyboard. This is awfully handy—it means your program doesn’t have to
know anything about files in order to operate on files.

Similarly, printf sends its output to the standard output, which is normally
attached to the screen so that printf’s output appears on the screen. But you
can redirect the standard output to a file also: foo > output_file attaches
foo’s standard output to the file output_file, and everything that printf
writes will go into the file instead of to the screen.

Your program is completely unaware that anything different is happening
when it gets run with its standard input or output redirected, and that’s good,
because it means you don’t have to write any extra code to handle it.

2.1 A File Copy Utility

This trivial program copies data from the standard input to the standard output:
(putchar’s argument is a character, which it writes out on the standard output;
putchar(c) is identical to printf("%c", c).)

Copyright (©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark—Jason Dominus 3

#include <stdio.h>

int main(void)
{

int c;

while ((c = getchar()) != EOF)
putchar(c);
return O;

}

Let’s call it scopy, for ‘simple copy’. If you run scopy, it echoes everything
you type back at you, and perhaps that doesn’t seem too useful. But you
can use it to copy files: scopy < source file > destination file copies the
data in source_file into destination file. It’s also a program that types
the contents of a file on the screen: scopy < file reads from file but writes
to the screen.

3 Operating on a Particular File

Sometimes, though, you want to read data from or write data to a particular file.
For example, the compiler needs to write its output into a file with a particular
name. How do we do that?

3.1 Opening a File

First you have to ask the operating system to open the file for you. Opening a
file means that you notify the operating system that you want to use the file.
The operating system checks to make sure that the file you've named exists,
and that you have permission from the file’s owner to read or write the file. It
sets up variables in its own blackboard space that keep track of how much data
you’ve read from the file and what part of the file the next byte is supposed to
come from. Sometimes it does other things too—on UNIX the operating system
arranges that if someone erases a file that you’re reading, the file doesn’t actually
go away until you're done.

The way you open a file is with the fopen function. fopen accepts two
arguments: The first a string containing the name of the file you want to open,
and the second is a string that says whether you want to read the file or write
it. For example:

Copyright (©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark—Jason Dominus 4

fopen("csel10.log", "r");

says to open the file cse110.log for reading. ("r" means ‘read’; if it were "w
it would open the file for writing.)

fopen’s return value is a peculiar type: It’s a pointer to an object called a
FILE, which contains some data from the file, information about whether you've
reached EQF in the file, and other things that the standard I/O functions need to
know to work properly. You need this FILE * value later on to tell the computer
what file you want to read or write from. In some sense, the FILE * ‘represents’
the file.

FILE * values are often called streams.

The prototype for fopen looks like this:
FILE * fopen(char *filename, char *type);

If fopen can’t open the file for some reason, it returns the NULL pointer.

3.2 Reading from a File with getc

Once you've got the file open, you can operate on it with functions that are
very much like the ones you're used to. For example, getc is a function which
takes one argument, a FILE *. It is exactly like getchar except that it reads
its character from the source represented by the FILE * that is its argument,
instead of from the standard input. Here’s code to print out the contents of the
file mydata.txt onto the standard output:

Copyright (©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark—Jason Dominus 5

#include <stdio.h>
#define FILENAME "mydata.txt"

int main(void)

{
FILE * the_file;
int c;
the_file = fopen(FILENAME, "r");
if (the_file == NULL) {
printf ("Couldn’t open the file ¥%s.\n", FILENAME);
return 1;
}
while ((c = getc(the_file)) != EOF)
putchar(c);
return 0;
}

Actually we left out a detail here: getc and getchar return EOF for two
reasons: because there was no more data for them to read, or because there
was some kind of error in reading the data. (For example, the disk failed in the
middle.) We really should have checked whether the getc above was returning
EQF for end-of-file or for an error. We’ll see how to fix this soon.

3.3 Stream Versions of printf and scanf

The function fprintf is just like printf, except it has an extra argument:
The first argument to fprintf is a stream to write its output to. The second
argument is a format string just like printf’s first argument, and the remaining
arguments are values to fill into the conversions in the format string, just like
printf’s remaining arguments. So, for example,

fprintf (the_file, "The value of %s is %d.\n", "fooey", fooey);
is exactly like
printf ("The value of %s is J%d.\n", "fooey", fooey);

except that the fprintf writes the output to the file represented by the_file,
while the printf writes it to the standard output.

Copyright (©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark—Jason Dominus 6

Similarly, there is an fscanf function, which is just like scanf. Similarly,
getchar has getc and putchar has putc.

3.4 Closing a File

When you’re done with a file, you must close it. This tells the operating system
that you are done using the file. That way the operating system knows that it
can forget all the details about the file that it was keeping track of for you, such
as how much data you'd read out of it.

To close a stream, you call fclose. fclose’s argument is the stream you
want to close. Once a stream is closed, you can’t read from it or write to it any
more. fclose returns 0 if it succeeds and EOF if it fails. One reason fclose
might fail is that you tried to close a stream that you never opened.

4 Command-Line Arguments

When you run a program from MS-DOS, you can give it arguments. For ex-
ample, when you run the copy command, you give it arguments that say what
files you want copied and where you want them copied to. These command-line
arguments get passed in to main when the operating system calls main.

If we were writing copy in C, we’d need some way to examine the command-
line arguments so that we’d know which files to copy.

4.1 main’s Header

There are exactly two legal ways to write main’s header.
int main(void)

we already know about—it means we're going to ignore the command-line ar-
guments. The other header main can have is

int main(int argc, char *xargv)

When the program gets run, the operating system collects the arguments
together. Each argument gets put into a NUL-terminated array of characters.

Copyright (©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark—Jason Dominus 7

The operating system gets the address of the first element each of these
arrays. These addresses have type <pointer to char>. It takes the addresses
and assembles them into another array, an <array of pointer to char>. This
array is called the argument vector.

The operating system then takes the address of the first element in the
argument vector. The first element is a <pointer to char>, and so the address of
the first element has type <pointer to pointer to char>. The operating system
arranges that this value, the address of the argument vector, gets passed to
main as its second argument, which is conventionally called argv for ‘argument
vector’, even though it’s really a pointer to the argument vector itself.

main has the usual problem: It’s got argv, a pointer to the first element of
an array, so it can find the elements of the array with no problem. But how
does it know when to stop?

main’s first argument is the argument count, conventionally called argc. It’s
an <int>. It says how many arguments there are and therefore how long the
argument vector is.

4.2 A Thousand Words about argv and argc

Here’s a picture:

Copyright (©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark—Jason Dominus 8

4.3 argc and argv in Practice

It takes a while to get comfortable enough with pointers to understand what’s
going on with argv. In the meantime, just remember this: argv[0] is a string
which contains the program’s first argument. argv[1] is a string which contains
the program’s second argument, and so on, up to argvlargc-1], which is a
string which contains the program’s last argument.

4.4 The echo Program

Here’s a program called echo, which prints out its command-line arguments
onto the standard output:

#include <stdio.h>

int main(int argc, char *xargv)

{
int 1i;
for (i=0; i<argc; i++)
printf("%s ", argv[il);
printf ("\n");
return 0;
}

4.5 The type Program

Here’s a program which types out the contents of the files named on its command
line. It’s like the MS-DOS type command.

#include <stdio.h>

int main(int argc, char **argv)
{

int i;

int c;

FILE *cur_file;

int num_errors = 0;

Copyright (©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark—Jason Dominus 9

for (i=1; i<argc; i++) {
cur_file = fopen(argv[i], "r");
if (cur_file == NULL) {
printf("Couldn’t open file %s.\n", argv[il);
num_errors += 1;
continue;

3

while ((c = getc(cur_file)) != EOF)
putchar(c);

fclose(cur_file);

}

return num_errors;

3

Some notes: We used continue, which we haven’t seen before. When the
computer encounters a continue statement, it immediately starts the next it-
eration of the smallest loop it’s in. Inside of while or do—while loop, continue
skips the rest of the loop body and jumps right to the test. In a for statement,
continue is the same, except it evaluates the update expression before skipping
to the test. We use it here because if we can’t open a file, we don’t want to
bother with the rest of the loop, which is for reading a file; we want to go on
and try the next file immediately. continue starts the next pass through the
loop immediately, without executing the rest of the loop body.

We use the variable num_errors to keep track of the number of problems
we’ve had with the files so far, and return it when we’re done. Note that this
is consistent with the convention of returning 0 if your program was successful
and nonzero if it encountered errors.

argv[0] conventionally contains the name of the command that’s being
run—in this case, type. If we entered the command

type foo bar baz

to type out the files foo, bar, and baz, then argv[0] would be type, and
argv[1] would be foo. That’s why we start opening files with the one named
in argv[1].

Note that we’re always careful to close files with fclose when we're done.
most systems enforce a limit on the number of files you can have open at once,
so we need to recycle our streams when we’re done using them.

Copyright (©1992 Mark-Jason Dominus All rights reserved.

