Lecture 14

CSE 110

24 July 1992

We didn’t get a chance to finish working on type, but we will soon. In the
meantime we talked more about strings and how to work with them.

1 Problem 2.2 (strrev) from the Exam

Write the function strrev, whose argument is a string, and which
reverses its argument in place. That means that if we do:

char word[] = "Foo";
printf("%s\n", word);
strrev(word) ;

printf ("%s\n", word);

the output should be Foo, followed by ooF.

This was one of the hard problems on the exam. Nobody actually turned in
a working solution, although several people came close. First I'll show a working
solution, and then we’ll discuss some alternative solutions.

One thing a lot of people did was to write a program that actually printed
out the string backwards. People who did this correctly got half credit, but it
wasn’t what the function was supposed to be about—the question asked for a
function that would reverse a string ‘in place’. That means that we want to be
able to tell the function where our string is (presumably via a pointer), and the
function will find the data there and reverse it and leave the answer in memory
in the same place that the original word was. No input or output was required.
This should have been clear from the example: word contains Foo when we print
it out the first time; we run strrev, and nothing is printed out until the second
printf, which demonstrates that word now contains ooF.

When you're asking yourself how to reverse a string in place, you might
think to yourself, “Well, I could copy the string backwards into some auxiliary

CSE 110 Lecture Notes Mark—Jason Dominus 2

space, and then copy the reversed string back from the auxiliary space to the
original space.” To do that you need to know how to ask for extra space on the
fly, and we didn’t know how to do that at the time we took the exam.

1.1 A Solution

The solution I was hoping for took some ingenuity to find: We have two pointers,
s and e. s starts out pointing to the first character in the string, and e starts
out pointing to the last character in the string. We swap the characters that s
and e are pointing to; that’s easy. Then we increment s to point to the second
character, and decrement e to point to the next-to-last character. We repeat,
until both pointers are pointing to the middle letters of the string; then we’re
done.

Here’s the code.

void strrev(char *s)

{
char *e;
int left=0; /* Count of characters left to swap */
char temp; /* For swap */

/* If length of string is less than 2, don’t bother. */
/* Note short-circuiting here—it’s very important. */
if (s[0] == °\0’ || s[1] == °\0’)

return;

/* First, point e at end of s and compute length of s: */
for (e=s; *e != ’\0’; e++)
left++;

/* e now points to NUL character at end of s. */
/* left is the number of characters we have to swap. */

e==;
/* e now points at last character in s. */

while (left > 1) {
temp = *s; *s = *e; *e = temp; /* Swap characters at beginning and end */
; /* Move towards middle of string */
left -= 2; /* two fewer characters to swap. */

3

st+; e——

Copyright (©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark—Jason Dominus 3

There’s nothing new here, so it was fair game for the exam.

1.2 A Non-Solution

Some people did think of the auxiliary-space method, and handed in something
like this:

void strrev(char *s)
{
int i, len = strlen(s);
char aux[len+1]; /* You can’t do this x/

aux[len] = ’\0’;

for (i=0; i<len; i++)
aux[i] = s[len-1-i]; /* Copy string backwards */

for (i=0; i<len; i++)
s[i] = aux[i]; /* Copy string forwards */

return;

This is ingenious, but it doesn’t work. The catch is that an array’s size must
be determined at the time the program is compiled.! Nevertheless, people who
did this correctly (not counting the illegal array declaration itself) got three-
quarters credit.

1.3 Another Solution with strdup

Here’s another auxiliary-space solution—this one does work. Unfortunately,
nobody could have turned this in because we hadn’t covered strdup by the
time we had the exam:

1Some compilers do allow variable-sized arrays, as a non-portable extension.

Copyright (©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark—Jason Dominus 4

void strrev(char *s)

{
int i, len = strlen(s);
char *xaux;

aux = strdup(s);

. /* Same as above */

strdup’s argument is a string. strdup does this:

1. Tt looks at the string,

2. It finds out (probably with strlen) how much space is necessary to store
the string, (one byte for each character in the string, and an extra byte
for the NUL character that terminates it),

3. It somehow finds and reserves enough space for a copy of the string,
4. Tt copies the string into the memory it’s reserved, and

5. It returns a pointer to the first character in the new copy of the string.

If strdup fails, for example because it can’t reserve enough free space for a
copy of its argument, it returns the NULL pointer.

When we say that strdup ‘reserves’ space, we mean that the space won’t
be used for something else until we tell the computer that it’s all right to do
so. We can be sure that future calls to strdup will find other space, and that
variables we declare will be allocated out of space other than that reserved by
strdup.

1.4 free

The space reserved by strdup stays reserved until the program terminates or
until we explicitly make the space available for re-use. This is called freeing the
space; we do it with the free function. If p is a <pointer to char> which points
to space reserved by strdup, the call free(p) frees that space; a variable might
get put there later, or a future call to strdup might copy new data there and
return a new pointer to it.

Copyright (©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark—Jason Dominus 5

2 Comparing Characters and Strings

The comparison operators <, <=, >, and >= all work on characters as well as on
numbers, in a reasonable way.

2.1 Comparing Single Characters

It’s definitely true that:

0 <712 < ... <78 <Y
YAY < PB? < ... <Y < 07
'3’ < b’ < ... <y < 0z?

The relative ordering of these three classes, however, is implementation-
dependent. Depending on what kind of machine you are using, it might be true
either that’A’ < ’a’ or that ’a’ < ’A’. On the machines we use, it’s the case
that 9’ < A’ < ’Z’> < ’a’.

The NUL character is always less than any printable character. A printable
character is one that makes a space or a mark on the screen.

We can use this character ordering to write a function that compares strings
alphabetically.

2.2 Comparing Strings

We'll write a function which accepts two strings as arguments and returns some
kind of answer to say which string comes earlier in an alphabetical ordering.
We’ll do something reasonable for nonalphabetic strings.

We'll say that a string is less than another string if it comes before that string
in the dictionary. For example: bar is less than foo; food is less than fool;
fool is less than foolish. Please note that ‘less’ does not mean ‘shorter’.
foolish is less than zebra, but it is not shorter than zebra.

Our function will examine the first character of each argument. If the char-
acters are different, we know right away which string is least: The one whose
first character is least. We can return an answer right away in this case. We’ll
return -1 if the first argument is less than the second, and 1 if the first argument
is greater than the second.

Copyright (©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark—Jason Dominus 6

If the first two characters are equal, we’ll go look at the second two charac-
ters, and soforth.

We keep doing this until either we find two characters that don’t match (in
which case we return 1 or -1 as above) or until we reach the end of one or both
strings.

If we reach the end of both strings at once, then they were identical, and we
return 0.

Otherwise, one of the strings is a prefix of the other, which means that it is
just the same as the other string, only it is missing some characters off the end;
for example, foo is a prefix of foolish. In this case the shorter string is least,
and we should return 1 or -1 as above.

That said, here’s the code we wrote in class:

int strcmp(char *sl1, char *s2)

{
while(1) {
if (*sl == ’\0’ && *s2 == ’\0’)
return O; /* strings are identical */
else if (*s1 == ’\0’)
return -1; /* s1is a prefix of s2 */
else if (*xs2 == ’\0’)
return 1; /* s2 is a prefix of s1 */
else if (*s1 < *s2)
return -1; /* s1 is less */
else if (*s1 > *s2)
return 1; /* 82 18 less */
else {
sl++; s2++;
}
}
}

This code works. It’s functionally equivalent to a standard library function
called strcmp, which operates in the same way. strcmp returns negative, zero,
or positive, depending on whether its first argument is less than, equal to, or
greater than its second argument. (strcmp doesn’t always return —1, 0, or 1.)
To use strcmp, you must include <string.h>.

Copyright (©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark—Jason Dominus 7

2.3 Case-Insensitive Comparison

Our strcmp function does a thing that we might find peculiar: It says that
Snider is less than food, because, in Turbo-C++, capital letters are always
less than lowercase letters. We say that strcmp is case-sensitive, because it
treats the words Snider and snider differently. We might wish to erase this
distinction and make Snider greater than food, because s, capital or not, comes
after f in the dictionary.

To do this, we can use the standard function tolower. tolower accepts
one argument, which is a character. If the character is not an uppercase letter,
tolower returns the character it was passed; if the argument was an upper-
case letter, tolower returns the lowercase version of that letter. For example,
tolower (’X’) is ’x’; tolower(’y’) is ’y’; tolower(’2’) is ’2°.

What we’ll do is convert the characters in our strings to lowercase before we
compare them; then the S in Snider will behave as though it were a lowercase

S.

Replace the lines

else if (*s1 < *s2)
return -1;

else if (*s1 > *s2)
return 1;

with

else if (tolower(*sl) < tolower(*s2))
return -1;

else if (tolower(*sl1l) > tolower(*s2))
return 1;

. The function we get is called strcasecmp on UNIX systems, but it seems to
be called stricmp or strcmpi under Turbo-C++.

tolower, and a collection of similar functions, such as toupper, are declared
in <ctype.h>.

Copyright (©1992 Mark-Jason Dominus All rights reserved.

