
Lecture 16

CSE 110

28 July 1992

1 Dynamic Memory Allocation

We are finally going to learn how to allocate memory on the fly, getting more
when we need it, a subject not usually covered in introductory C courses.

1.1 malloc

We’ve already seen strdup, which finds memory somewhere and reserves it.
How did strdup find that memory?

Chances are it called malloc. malloc finds memory by asking the operating
system for a big bunch of memory and then parceling it out a little at a time as
you ask for it.1 It’s malloc that takes care of recording how big each parcel is
so that free can free it properly.

To call malloc, pass as an argument the number of bytes of space you want
to allocate. malloc will reserve that many bytes and return a pointer to the
memory it found. If it fails for any reason, such as because all the memory is
already reserved, malloc returns (all together now) the NULL pointer.

1.2 sizeof

Frequently you want to allocate enough memory to store an object of a certain
type; you need to be able to tell malloc how many bytes of space the object
takes up so it knows how much to allocate. There’s an operator in C which tells
you how big an object is: sizeof.

1malloc does it this way, instead of going to the operating system every time, because
operating system requests are very slow.

1

CSE 110 Lecture Notes Mark–Jason Dominus 2

If type is the name of a type, the value of the expression sizeof(type) is
the number of bytes needed to hold that type; for example, on our machines,
sizeof(int) is 2 and sizeof(double) is 8.

If we want to get enough space for an array of 13 <int>s, we can do
malloc(13 * sizeof(int)) or even malloc(sizeof(int[13])).2

There’s another way to use sizeof: If e is an expression with type t, then
the value of sizeof(e) is the same as the value of the expression sizeof(t).

2 structs

We’ve seen how to use an array to store many values of the same type, and even
to treat the collection of values as a unit. Now we’ll look at the complementary
type, the structure, which allows you to group several different object together
as a unit.

2.1 Creating a New Structure Type

The typical example of a structure is this: You want to keep track of the em-
ployees in your organization. Each employee has a name (a string of no more
than 50 characters), a social security number (a <long int>), and a salary (an
<int>). You want to handle several such records.

You can create a new type, a struct employee, which keeps all of this
information in one place. First, you define the new type:

struct employee {
char name[51];
long int ssn;
int salary;

} ;

When you write this in your program, it defines a new type, the type struct
employee. A variable of type struct employee has three members: name, an
<array of 50 chars>, ssn, a <long int>, and salary, an <int>.

employee is called the tag of the structure.
2int[13] is the name of the type <array of 13 ints>. To construct the name of a certain

type, just write a declaration for a variable of that type, and then discard the variable name
and the semicolon from the declaration.

Copyright c©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark–Jason Dominus 3

2.2 Creating struct Variables

To declare a variables of type struct employee, just write:

struct employee smithers, marketing[12], *the_employee;

smithers is a struct employee; marketing is an array of twelve of these
structures, and the employee is a pointer to one of these structures.

2.3 The . Operator

Suppose smithers is a struct employee variable, as above. Suppose we want
to store the information that Smithers’ social security number is 314-15-9265.
Here’s how we would do that:

smithers.ssn = 314159265;

The . operator is the structure member operator. Its left operand must
be a structure of some kind; its right operand must be the name of one of the
members of that structure. The entire expression refers to the specified member
of the specified structure. So similarly,

if (smithers.salary > 10000)
...

asks if Smithers’ salary exceeds ten thousand dollars.

Similarly, let’s suppose the array marketing, which is an array of 12 struct
employees, has been initialized with the names, salaries, and social security
numbers of the members of the marketing department. Here’s how we’d compute
the average salary in the marketing department:

long int totalsalary = 0;

for (i=0; i<12; i++)
totalsalary += marketing[i].salary;

printf("Average salary is %f.\n", totalsalary/12.0);

marketing is an array of struct employees, so marketing[i] is a struct
employee, and marketing[i].salary is the salary member of that struct
employee.

Copyright c©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark–Jason Dominus 4

As a final example, this is some code which prints out the name and social
security number of the highest-paid member of the marketing department:

int highest_salary = 0;
int i, highest_salary_index;

for (i=0; i<12; i++)
if (marketing[i].salary > highest_salary) {

highest_salary = marketing[i].salary;
highest_salary_index = i;

}

printf("The highest-paid employee is %s (%d).\n",
marketing[highest_salary_index].name,
marketing[highest_salary_index].ssn);

3 The Linked List

Suppose we want to write a program which reads an input file, counts the
number of occurrences of each different word in the input, and then prints
out a report of the form “There were 27 occurrences of the word ‘I’, 53
occurrences of the word ‘the’. . . ”. You might want to have an array that
will hold words and another that will hold counts, but that doesn’t work, because
the arrays have a fixed size, say 500 elements each, and if the input contains
501 different words, you’re stumped. We need to have a data structure that can
grow arbitrarily large if we need it to.

The simplest example of such a data structure is the linked list . A linked
list is a collection of nodes in some order; each node contains some information
about how to find the ‘next’ node, and perhaps some auxiliary information as
well. The last node has some kind of marker that says it’s last.

To keep track of a linked list, all we need to do is remember where the first
node is. Then that first node contains information (called a link) that tells us
where the second node is; the second node has a link to tell us where the third
node is, and soforth. Clearly the list can be any length.

3.1 The Nodes are Structs

Here’s a simple way to implement a linked list: it keeps track of as many numbers
as we like:

Copyright c©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark–Jason Dominus 5

struct listnode {
int data;
struct listnode *next;

} ;

This struct has two members: data, which actually holds a number, and
next, which points to the next node in the list.

3.2 Adding a New Node to a List

Suppose the address of the first node in the list is stored in the variable firstnode,
whose type is struct listnode *. Suppose also we discover that we need to
remember one more number, newnumber. How can we add that number onto
the list of numbers in a list of these nodes?

struct listnode *temp;

temp = malloc(sizeof(struct listnode));

(*temp).next = firstnode;
(*temp).data = newnumber;
firstnode = temp;

First we create enough space for a new list node, with malloc; then we
link the node to the rest of the list by setting its next pointer to point to the
old first node. Then we store the number we want to remember into the data
member of the new node. Then we remember that the new node is now first,
with firstnode = temp. We can do this as many times as we want, until the
memory runs out.

3.3 Getting the Data Back Out of the List

Now suppose we want to average the numbers stored in each node. It’s easy:

Copyright c©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark–Jason Dominus 6

struct listnode *current;
int average;
long int sum = 0L;
int nodecount = 0;

for (current = firstnode;
current != NULL;
current = (*current).next) {

sum += (*current).data;
nodecount += 1;

}

average = sum / nodecount; /* round down */

Here we’ve assumed that the next pointer of the last node in the list is NULL.
This makes perfect sense, and we can be sure that no other node but the last
has NULL for its next pointer, because all the other next pointers point to other
nodes, whose addresses are not NULL.

I hope it’s obvious how this is all relevant to the problem of managing an
arbitrarily large stack for your calculator.

3.4 The -> Operator

The operation of accessing the member of a structure via a pointer to the struc-
ture is common. We’ve used the construction (*foo).bar several times already.
C lets you use a short cut.

In all circumstances, the expression foo->bar is identical with (*foo).bar.
foo must be a pointer to a structure, and bar must be the name of one of the
members of that structure.

3.5 Other Operations on Structures

The things you can do with a structure are limited. You can find its address
with &, and you can access its members with . .

Since the ANSI standard, some things which were Too Much Work are no
longer considered to be too Much Work:

You can pass a structure as an argument to a function (in which case the
function gets a copy of the structure, the same way it does when you pass an

Copyright c©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark–Jason Dominus 7

<int>) and you can return a structure value as a return value from a function.

You can compare two structures of the same type for equality or inequality
with == and !=; two structures are ‘equal’ if each pair of corresponding members
are equal.

You can assign a structure value to a variable of the right structure type
with =; the members are copied one at a time.

You can’t do anything else with a structure.

4 Global Variables and Type Declarations

Normally, you declare a variable inside a function. Then the variable is created
when the function is called, is destroyed when the function returns, and the
name of the variable is known only within the function.

This holds for structure type definitions also; if you define a structure type
inside a function, the type and its name are only known within that function.
That’s not too useful; we would like the structure type definition to be visible
everywhere.

If you write a declaration or type definition outside of all the functions, it is
called a global variable or definition. It becomes visible to every function that
follows the declaration or definition in the entire file. We have been doing this
with function prototypes all along; in fact you can put a function prototype
inside another function, and the information that the prototype communicates
is only known locally, and now outside the function in which the prototype
appears. Doing this is rarely useful.

If you write int foo; at the top of your program, outside all the functions,
then every function in your entire file will have access to the variable foo. If one
function changes the value of foo, the others can see the change; the name foo
refers to the same variable, no matter which function is using it. Furthermore,
unlike a local variable, which is created when the function that owns it is called
and destroyed again when the function returns, a global variable is created when
your program is run and is not destroyed until the program completes.

A global variable is an abnormal communication mechanism; functions can
use it to communicate values back and forth even though it may not be obvious
that they’re doing so; for this reason, you should avoid using global variables
in your program. There are occasions when it is appropriate: when some large
piece of information is really global, and most of the functions make frequent

Copyright c©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark–Jason Dominus 8

references to it.3

Function prototypes, structure type definitions, manifest constants, and
other information that doesn’t change, on the other hand, are appropriate things
to make global.

5 A Program to Count Words

At the end of these notes you’ll find the complete code for the example we
chipped away at in class: It reads ‘words’ from the standard input, counts the
number of occurrences of each word, and prints a report when it’s done. It uses
a linked list to keep track of what words it seen and how many times it’s seen
each word. There is no arbitrary upper bound on the number of different words
it can handle.

What follows here are notes on the code; the numbers in the margins are
source code line numbers. I hope you will read the code carefully and try to
understand what each part is doing. The notes only exlpain the fine points;
most of the details of how the program works are not explained in the notes.

16 <ctype.h> is here to provide the definition of isspace, which we use later,
in function getword.

18 <malloc.h> declares malloc, free, and other related functions.

27 This is the defintion of the ystructure type we’ll use for a node in our
linked list. Each node has three parts: A pointer to the word it represent,
a count of the number of occurrences of that word seen so far, and a
pointer to the next node.

41 We could describe a list of n nodes this way: It has a head node, which
has some data associated with it, and which has a pointer to a list of n−1
elements. So a list of 2 nodes has a head node, which has some data and
which has a pointer to a list of 1 node. A list of 1 node has a head node,
which has some data and which has a pointer to a list of 0 nodes. But
this latter pointer is actually NULL, because the head node is the last node
in the list, so we’ve just suggested that it might be wise to consider the
NULL pointer as a ‘pointer to a list with 0 nodes’.

3For example, a program might read a configuration file that specifies certain details about
how the program should work; the information in the configuration file is stored in a large
structure. Nearly every function has to consult one or another member of this structure, so
it might be appropriate to make the structure variable global.

Copyright c©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark–Jason Dominus 9

When we initialize list, we initialize it with a ‘pointer to the empty list’,
NULL, and it turns out that the function count, which manipulates lists,
does the right thing if we pass it this pointer.

45 count might append a new node onto the head of the list, and we need
a way to apprise main of that fact, so that it can remember where its
list starts. We do this by returning a pointer to the new head node from
count after we’ve attached it, and main just stores this pointer in list,
the variable it was using to hold a pointer to the first node in the list.

We wouldn’t have to bother with this if count just attached the new node
to the tail of the list instead of to the head, but that’s uaully harder to
do, because the head of a list is usually easier to find than the tail.

46 getword allocated space for newword; we passed newword to count, which
in turn made a copy of it to store in the list, and so the copy we got back
from getword can be freed now.

Why have count copy newword at all? If you’re writing a function like
count and you need to save some data that was passed in, it’s a good idea
to make a copy because you never know when your calling function might
decide to destroy the original.

51 Note that this code works even if the input contained no words at all: In
that case, the body of the while loop on lines 44–49 was never executed at
all, and list is still NULL; we exit the program without printing anything.

66 count accepts two arguments: a word and a pointer to the first node in
a list. It searches the list for a node whose word member is word; if it
finds it, it performs its primary function and increments the count in that
node. Otherwise, it manufactures, initializes, and links in a new node. In
either case it returns a pointer to the new head node of the list (which
might be the same as the old head node) to tell its caller whether or not
the list has gotten longer.

71 Note that this code also works if the calling function passes in NULL for
list: the condition on the for loop fails immediately and we proceed to
like 77, where we begin the process of adding a new node to the list.

81 We used the exit function here. exit completely terminates the program
when it is called; control returns to the operating system. Accordingly,
exit does not have a return value. Contrast exit, which terminates
‘normally’, with abort, which terminates ‘abnormally’. exit accepts one
argument, which is treated the same way a return value from main is; in
fact, the effect of exit(n) is identical to that of a return n; from main.4

4It might be more accurate to say that a return from main is identical to a call to exit,
because compilers frequently compile it as one.

Copyright c©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark–Jason Dominus 10

Here we exit with a return status of 1, signalling that something went
wrong.

90 We copy word here; see the note for line 46.

92 If we’re initializing a new node, we initialize its count to 1, because we’ve
seen exactly one occurrence of the word that the node represents.

100 create new node is a separate function for the usual reasons:

1. It’s functionally separate from the other functions.

2. It might one day be called from more than one place, since it performs
a generally useful function.

3. It might one day change and include more complicated node-building
apparatus such as initializations.

4. If we ever again need a function that allocates and returns a list node,
we might be able to come steal this one.

103 My compiler complains about this line, because the return value from
malloc is a<pointer to char>, which is implicitly converted to a<pointer to
struct wordcount node> when we return it from the function. Usually,
if you’re converting pointers in this way, it means you made a mistake.
On some machines, certain pointer conversions will fail altogether.5 How-
ever, the value returned from malloc is an exception: The memory it
points to is guaranteed to be suitable for storing any variable whatever,
and the pointer is guaranteed to be freely convertible to any other pointer
type. malloc must take special pains to ensure that this is the case. The
compiler complains only because it doesn’t know enough about malloc.

111 I wrote this function two years ago, and I’ve been re-using it ever since.

113 We allocate a buffer of MAXWORDLEN characters to hold the input word,
but this function never checks to make sure it isn’t writing past the end
of the buffer. If the input contains an extremely long word, getword will
happily write past the end of buf. This is a serious error.

117 isspace is a function whose argument is a character; it returns true if
the argument is a white space character and false otherwise. White space
characters include the blank, tab, and newline. isspace was declared in
<ctype.h>. (Line 16.)

5For example, consider a computer with a main processor and an auxiliary processor which
is very good a floating-point arithmetic and which has its own auxiliary memory, optimized
for storing floating-point numbers. The compiler might very well decide to store <int>s into
the main memory and <float>s into the auxilliary memory; in that case you wouldn’t be
able to interconvert <pointer to int> and <pointer to float>. This is a somewhat contrived
example.

Copyright c©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark–Jason Dominus 11

120 We haven’t seen ungetc yet; it’s like the opposite of getc: it ‘unreads’ a
character. After you ungetc a character onto a stream, the next attempt
to read the stream will proceed as if you had never read that character; the
first character returned by the reading function will be the character you
‘unread’. ungetc is limited: You can’t un-get more than one character at
a time, and you can’t un-get a second character until you’ve read the first
one back. ungetc is declared in <stdio.h>.

128 the loop on lines 123–124 reads characters from the standard input into
the buffer buf6, and stops when it reads a space or hits EOF. Now suppose
the last word in the file was not followed by a space; say the last word is
visible, and then after the e, nothing. getword has read visible into
the buffer, and has just hit EOF. What do we want it to do?

We do not want getword to return NULL the instant it sees EOF, because
if it did our caller would never find out about visible. So instead, we
return NULL only if there is nothing in the buffer; that is, when i == 0. In
the case of visible, i is 7, so we duplicate visible and return the copy;
then the next time getwords is called, it hits EOF right away, without
reading any characters into the buffer buf, and so i is 0 and it returns
NULL.

6buffer is a generic word that describes a part of memory that input is being read into.

Copyright c©1992 Mark-Jason Dominus All rights reserved.

