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1 Doubly-Linked Lists

We’ve seen how to use a linked list to keep track of an arbitrarily large amount
of information, growing the list as we need to. We can search through the list
and look for something, or print out all the data in the list.

As a further illustration of dynamic memory techniques, let’s suppose that
we need to be able to walk through a list backwards as well as forwards. That’s
the one thing we can’t do well with the linked lists we’ve seen: Once we get to
a node, we don’t remember how we got there.

The solution is simple, of course: Instead of one pointer per node, we have
two: One that points forwards and one that points back.

In class we developed code to read an arbitrarily long list of integers from the
user, terminated by a 0, print the numbers out in the order they were entered,
and then print the numbers in reverse order. We needed to traverse the list in
both directions.

1.1 A Program to Print a List of Numbers Forward and
Backward

The code we developed in class appears at the end of these notes; these are
some comments on various details of the code.

We had a big argument in class about one of these details: The problem of
how to start the list off. There were two main camps: One camp said that we
should start the list off with a ‘bogus node’, so that the functions that operated
on lists would always have something to work on. The other camp held that the
pointers to the head and tail nodes of the list should start out NULL, and that
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the functions that operate on lists should check for that and behave slightly
differently, if necessary, if they saw that they were operating on an empty list.

Neither method has advantages.

Disadvantages of the ‘bogus node’ solution include:1

• The head and tail of the list are now drastically different, because the head
has a bogus node, but the tail doesn’t. This means that the functions to
walk through the list from head to tail will look substantially different,
whereas they probably should look almost the same since they are doing
almost the same thing.

• A list with no nodes is a perfectly reasonable entity. To avoid it for no
reason smacks of superstition akin to the fear of the numeral zero prevalent
in Europe in the Twelfth Century.

Disadvantages of the ‘NULL pointer’ solution include:

• You might have to complicate the functions that manage lists to include
special cases for empty lists.

• This complication will slow down the list-managing functions.

1.2 Notes on the Code

5 This is the definition of the bogus value that we’re going to use to mark
out bogus node. It’s also the value that the user uses to indicate end-of-
input. It’s good to use the same value for both things: because the value
marks the end-of-input, it can never be one of the data items we have to
remember, and so therefore it’s an ideal bogus node marker.

7–11 It might have been better to put the two pointers in this structure together,
to emphasize the way they were related, but we put things in this order
so that they would look good on the blackboard. Now that out program
works, we can forget the blackboard, and we should probably reorder the
structure members.

1We said in class that another disadvantage is that the bogus node must be distinguished in
some way. In this program, we distinguish it by storing BOGUS VALUE into its number member,
but in some circumstances a ready-made bogus value may not be available. However, if
no appropriate bogus value had been available, we could have distinguished the bogus node
because it would be first in the list and therefore it would have a NULL pointer in its member
for pointing to the previous node in the list.
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13 We wrote the prototype for getnum last week, as soon as we knew what
we wanted the function to do, before we wrote the function itself. If we’d
been paying more attention, we could have used the prototype today to
help remind us of how to write getnum. It would have been even better
to hang a comment near the prototype.

24 head and tail are pointers to the first and last nodes in the list, respec-
tively. We probably ought to add a comment to that effect.

26–29 These lines set up the bogus node at the head of the list. Note that we
forgot to check for an error (NULL) return from malloc, and if malloc fails
here we’ll go and set the members of a nonexistent structure. Therefore
this program has an error.

33 store input is the function that appends a new node and a new datum
to the end of the list. It returns a pointer to the new last node, so that
main can keep track of where the last node is at all times.

It might have been more elegant to have store input return void, and
to pass in a pointer to tail itself instead of a copy of tail’s value. Then
store input could have changed tail’s value without intervention from
main.

44–56 store input, as promised, is simple; we have to manufacture a new
node, fix its three members, and link it into the list by making the old
tail node’s forward member point to the new node. This last step,
tail->forward = newnode, is the only one that would fail if the tail
that were passed in were NULL; to make store input work when tail is
NULL, you need just skip this single statement. (This is not supposed to
be obvious; please work through the code and see what happens.) So to
convert store input to operate on an empty list is a matter of adding one
line of code: if (tail != NULL) just before tail->forward = newnode.

48 We forgot to check malloc here for an error return. This can result in
disaster. A full solution would be to have store node return NULL on
failure, and have main check for a NULL return from store node and abort
if there was one.

58–66 print forward uses the NULL-termination method to decide when to stop;
it traverses the list, following the forward members, and stops after the
forward member of the node it just processed was NULL. I think it’s worth
pointing out that this code works perfectly if the head that is passed in is
a NULL pointer.

60 The line head = head->forward is there to skip past the bogus node at
the head of the list before we start printing numbers.
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70 If no appropriate bogus value had been available to distinguish the bogus
node, we could have written while(tail->back != NULL) instead, so the
possible lack of a bogus value is not a serious deficiency in the method
we’ve used.

79 This is a quick hack on getnum; we should have added error checking and
soforth. In particular, getnum should return 0 if it sees EOF, to signal
end-of-input to main. As it is, our program goes into an infinite loop on
EOF.

We stuck in this minimal getnum so we could get the program working and
see if it had serious errors right away. This is perfectly legitimate. You
should aim to get the program into a minimally working state as soon as
possible, because that allows you to concentrate on major design decisions
while postponing little details, such as getnum’s error handling, as long as
possible.

A function like getnum that stands in for a better-developed version of the
same function is called a stub.

2 Recursion

This weekend, I made a list of topics I thought were important enough to cover,
but which we somehow missed along the way. Most of the things on the list are
miscellaneous trivia. Recursion, however, is powerful stuff, and you shouldn’t
get out of a programming class without seeing how it works.

Recursion is a programming methodology. The idea is that when we describe
how to perform a certain task (which is what programming is), it is sometimes
most natural to describe how to reduce the task to a simpler task of the same
type. Then you can reduce the simpler task to a still simpler task, and soforth,
until finally the task is so simple it’s trivial. Such methods are called divide-
and-conquer methods or recursive methods.

2.1 The Factorial Function

The factorial function is a function from elementary mathematics. The function
takes n nonnegative integer argument and yields a positive integer result. We
write the factorial of n this way: n!.

The definition of the factorial function is:

n! = n · (n− 1) · (n− 2) · · · 3 · 2 · 1
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except when n = 0: 0! = 1.

This definition yields a natural implementation in C:

long int fact(unsigned int n)
{
long int total = 1;

while (n>1)
total *= n--;

return total;
}

2.2 The Factorial Function

There’s another way that mathematicians often define the factorial function:

x! =
{

1 if x = 0
x · (x− 1)! otherwise

This definition is equivalent to the earlier definition, but it does a different
thing: Instead of defining the factorial of a number explicitly, it defines the
factorial in terms of a simpler factorial. To compute the simpler factorial we
will need to compute the factorial of a number smaller still, and soforth, until
finally we discover that all we need is the factorial of 0, which is defined to be
1.

This formulation also leads to a natural implementation in C:

long int fact(unsigned int n)
{

if (n == 0)
return 1L;

else
return n * fact(n-1);

}

And in fact this works. (The 1L is a constant with value 1 and type
<long int>.)
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The factorial function needs to call itself, but that’s not a problem. When a
function calls another, the computer saves a description of the place to return to,
and all the local variables and other information it will need in order to return
safely, and jumps into the called function. The saved information is sometimes
called an environment , but more often it’s called a frame. The function call
semantics that C adopts in order to allow this give C functions a property called
reentrancy ; a function can be called, called again before it returns the first time,
can return, and then return again, and the returns will happen properly and
will not interfere with one another.2

When the fact function calls itself, the same thing happens. All of fact’s
local variables and state information are saved, and the computer calls fact,
which means that a second invocation of fact is created, with its own local
variables. The first fact is paused, and waits for the second fact to complete.
If the second invocation of fact calls fact again, a second frame is created,
with the second fact‘s local variables saved in it; when the third fact returns,
the second fact picks up where it left off.

There is no arbitrary limit on the number of such nested calls one can make.
Each frame consumes a little memory, though, and so if you make to many calls
without returning, you’ll run out of memory and your program will fail. This
rarely, if ever, happens in correct programs, because frames are not that big.

2.3 The Towers of Hanoi Problem

The factorial function was simple enough, but there was an obvious nonrecursive
way to write it, and there’s no reason to use recursion when an obvious iterative
solution is available. In this section we’ll see a problem that is difficult to solve
iteratively, but trivial to solve recursively.

The puzzle is this: There are three vertical pegs, named A, B, and C. There
are some number, say 7, of circular discs, each of a different size, and each with
a hole in the middle so that they can be placed on the pegs. Initially, all the
discs are on peg A, with the largest at the bottom, the next largest on top of
that, and so on, with the smallest disc at the top.

The object of the puzzle is to transfer the entire tower to peg C, subject to
the following constraints:

1. You may only move one disc at a time.

2. You may never place a larger disc on top of a smaller disc.
2Not all languages have reentrant functions. FORTRAN is the principal example. This is

a serious deficiency because it means you can’t write a recursive function in FORTRAN.

Copyright c©1992 Mark-Jason Dominus All rights reserved.



CSE 110 Lecture Notes Mark–Jason Dominus 7

After some thought, we arrive at a solution: To transfer a tower of n discs
from A to C, we can break the problem into three parts:

1. Transfer the smaller tower of n− 1 discs from A to B.

2. Move the nth disc, the largest, from A to C.

3. Transfer the smaller tower of n− 1 discs from B to C.

In steps 1 and 3, we can ignore the large disc; it doesn’t complicate matters
at all. If we are performing these three steps in order to solve the problem with
7 discs, then steps 1 and 3 are just like the corresponding problem with only 6
discs.

How do we move a tower of 6 discs from one peg to another? Just apply the
method again: Move a smaller tower of the top 5 discs out of the way, move the
6th disc to the destination, and move the smaller tower on top of it.

How do we move a tower of 5 discs? Just...

Eventually we’ll reduce the problem to the trivial case, where we’re asking
how to move towers of 0 discs. How do we move a tower of 0 discs? Do nothing!3

This suggests a straightforward implementation in C, which we’ll see tomor-
row.

3If this bothers you, then take one fewer step: We’ll eventually reduce the problem to one
of moving towers of only 1 disc from one pin to another; that’s clearly trivial.
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