
Lecture 18

CSE 110

4 August 1992

1 The Tower of Hanoi

As promised, here’s the code for the Tower of Hanoi program.

In the program, the three pegs are represented internally by the numbers 1,
2, and 3. As written, the program reads a number of rings from the user, and
print out instructions to tell the user how to transfer a tower of this height from
ring 1 to ring 3.

The workhorse function, hanoi, moves a tower of num rings rings from peg
start peg to peg end peg. The first thing it does is to figure out where the
spare peg is; to do this it uses a simple trick: If pegs s and e are the start and
end pegs, then peg 6− s− e is the spare peg. (For example, if s is 2 and e is 1,
the spare peg is 6− 2− 1 or 3.)

If the height of the tower that hanoi is called upon to move has size 0, it
returns immediately, because it doesn’t need to do anything. Otherwise, it calls
itself recursively to move the subtower of num rings − 1 rings from the start
peg to the spare beg, calls move to move the largest ring from the start peg to
the end peg, and then calls itself recursively again to move the subtower from
the spare peg to the end peg.

void
hanoi(int num_rings,

int start_peg,
int end_peg)

{
int spare_peg = 6 - start_peg - end_peg;

1

CSE 110 Lecture Notes Mark–Jason Dominus 2

if (num_rings > 0) {
hanoi(num_rings - 1, start_peg, spare_peg);
move(num_rings, start_peg, end_peg);
hanoi(num_rings - 1, spare_peg, end_peg);

}

return;
}

move is the function which is called each time we want to move a particular
single ring. If we were writing our Tower of Hanoi program to do a fancy screen
display which showed the rings flying around from peg to peg, we would put the
code for drawing the rings on the screen in move. In this simple program, we’ll
be content to just print out an instruction about what peg should be moved
where:

void move(int ring_num, int start, int end)
{
printf("Move disk %d from peg %d onto peg %d.\n",

ring_num, start, end);

return;
}

We’ll add a main which examines its command-line arguments to decide how
many rings the user wants, and then just calls hanoi to print the instructions
for moving a tower of that many rings from peg 1 to peg 3:

void hanoi(int num_rings, int start_peg, int end_peg);
void move(int ring_num, int start, int end);

int main(int argc, char **argv)
{
int num_rings;

if (argc != 2) {
fprintf(stderr, "Usage: %s number_of_rings\n", argv[0]);
return 1;

}

num_rings = atoi(argv[1]);

hanoi(num_rings, 1, 3);

Copyright c©1992 Mark-Jason Dominus All rights reserved.

CSE 110 Lecture Notes Mark–Jason Dominus 3

return 0;
}

The atoi function is something new: It accepts a string which is supposed
to contain the string representation of an integer, and it returns the integer that
the string represents. For example atoi("119") returns the integer 119. atoi
returns 0 if there is an error, for example, because the string passed in was not
composed of digits.

The program is almost trivial with recursion, but it would be very difficult
to do without recursion, because the solution we have, to reduce the problem
to a simpler case, is already organized along recursive lines.

Copyright c©1992 Mark-Jason Dominus All rights reserved.

