
Lecture 19

CSE 110

5 August 1992

You taught me Language, and my profit on’t
is I know how to curse.
— William Shakspere, The Tempest, I, ii.

1 Left-Over Language Features

Today was the day we saw the last of the language features, things that are rarely
or never important. Each of these I expected to bring up when the appropriate
time came, at some moment when it would be useful, and the moment never
came.

We’ll see these features in increasing order of usefulness.

1.1 The , Operator

The , operator takes two operands, which must be expressions. To evaluate an
expression of the form expr1 , expr2, the computer evaluates expr1 , and then
evaluates expr2 . The value of the entire expression is the value of expr2 .

The , operator has two interesting properties: It guarantees that expr1 will
be evaluated first1, and it guarantees a sequence point between the evaluation
of the two expressions. This means that any side effects such as increments or
assignments that are scheduled as a result of evaluating expr1 will be completely
resolved before expr2 is evaluated.

Nevertheless, the , operator is mostly used when you want to stick two
expressions where only one normally fits, such as in the condition of a while

1Most operators, such as +, do not guarantee which of their operands will be evaluated
first.

1



CSE 110 Lecture Notes Mark–Jason Dominus 2

statement. The example that Kernighan and Ritchie give for the , operator is
a program to reverse a string in place, which we’ve already seen: (They called
it reverse.)

void strrev(char *s)
{
int c, i, j;

for (i=0, j=strlen(s)-1; i<j; i++, j++) {
c = s[i];
s[i] = s[j];
s[j] = c;

}
}

The commas that separate a function’s arguments, the variables in a decla-
ration, and soforth, are not , operators.

1.2 The ?: Operator

The ?: is unusual in that it has three operands. To evaluate the expression
expr1 ? expr2 : expr3 , the computer first evaluates expr1 . If expr1 is true, the
computer evaluates expr2 and that value is the value of the entire expression.
Otherwise, the computer evaluates expr3 and that value is the value of the
entire expression.

A ?: expression is like a miniature if–then. Here’s an example: This
function prints out the elements of an array, separated by spaces, with ten
elements per line.

void print_array(int *a, int nelems)
{
int i;

for (i=0; i<nelems; i++)
printf("%d%c", a[i], (i+1)%10 ? ’ ’ : ’\n’);

}

Here’s a simpler example: It sets the value of a to the value of either x or y,
whichever is smaller:

a = (x > y) ? y : x ;

Copyright c©1992 Mark-Jason Dominus All rights reserved.



CSE 110 Lecture Notes Mark–Jason Dominus 3

I swiped this example from K&R also.

1.3 The switch Statement

A switch statement has this form:

switch (expression) {
case value1:

statement11
statement12
...

case value2:
statement21
statement22
...

...
default:

statementd1
statementd2
...

}

To execute a switch statement, the computer evaluates the expression. Con-
trol then passes to the statement immediately after one of the three following
things, which are listed in order of preference:

1. A case label in the statement, which has the form

case constant :

where the value of the constant is the same as the value of the expression.
If there is no case label whose value matches that of the expression, control
passes to the statement immediately after:

2. A default label in the statement , which has the form

default :

. If there is no default label , control passes to the statement immediately
after:

3. The end of the case statement.

Copyright c©1992 Mark-Jason Dominus All rights reserved.



CSE 110 Lecture Notes Mark–Jason Dominus 4

Once into the compound statement part of the switch, control flows from
top to bottom as usual. Control does not leave the compound statement except
by flowing off the bottom of the statement or by encountering a break or return
as usual. In particular, after the computer executes the last statement in one
of the case sections, it continues on to the statements under the next case
section. This usually isn’t what we want, and so we almost always end each
case section with a break statement.

It’s so rare to actually allow control to fall through from one case section
to the next that you should always put in a comment when you do let control
fall through.

case can always be replaced by if–else if–else, but the restrictions on
it allow the compiler to generate more efficient code, particularly if there are a
lot of case labels.

1.4 Block-Scoped variables

We’ve only seen variables declared at the head of a function. These variables had
names that were known only inside the function in which they were declared,
and the variables were created each time the function was called and destroyed
again when the function returned.

In fact, you can declare new variables at the head of any compound state-
ment. The variables are created when control enters the statement, and de-
stroyed again when control leaves the statement. The names of the variables
are known only within the statement.

It’s good to declare variables as belonging to as small a compound statement
as possible, because it keeps the definition and use of the variable close together,
because it restricts communication, and because it’s easier to understand when
you’re reading the code—you know you can forget about the variable’s value
unless you’re reading the code for the compound statement in which it’s de-
clared.

We’ve actually seen this before: I used it in the sample solution to the
guessing game project.

1.5 true and false

We’ve been saying all semester that false was a zero value and that true was
a nonzero value. That’s only part of the story.

Copyright c©1992 Mark-Jason Dominus All rights reserved.



CSE 110 Lecture Notes Mark–Jason Dominus 5

In any condition context, such as the condition part of a while or for loop,
or the first operand of a ?: expression, the following values mean true and
false:

Type false true
number 0 non-zero
pointer NULL not NULL
character ’\0’ anything else

This means, in particular, that all those times we wrote if (c != ’\0’)
we could have just written if (c), and whenever we wrote if (newnode !=
NULL) we could just have written if (newnode) instead.

Opinion seems to be divided on whether or not this is bad style. Since
opinion is divided, and about half the world does in fact use the short forms, it
is therefore good style.

2 The Compiler and the Linker

The compiler is really two programs in one. The first part, the compiler , trans-
lates the C into whatever machine language is appropriate for the machine you’re
using. The translated version of the program is called an object file.

The second part of the compiler, the linker , does a simpler job. It looks
through the object file for function calls, and it arranges that the right functions
are called. When it’s done, it might discover that you called some functions for
which you didn’t provide code, such as printf; these are called unresolved ref-
erences. The linker then looks through library files, which contain pre-compiled
functions, for functions whose names match the unresolved references. If it finds
any, it includes the object code for those functions into your program. If there
are still unresolved references, the linker complains that it couldn’t finish com-
piling your program; otherwise it has resolved all the references and creates an
executable program.

Having a linker means that you can write your program in several different
files, compile them separately, months apart, have functions in one file call
functions in another, and the linker will sort out all the calls at the end. If you
change one function, you only need to recompile the file it’s in and then re-link
the program; you don’t need to recompile the unchanged source files.

We didn’t see how to do this because we never wrote a program long enough
to deserve it.

Copyright c©1992 Mark-Jason Dominus All rights reserved.



CSE 110 Lecture Notes Mark–Jason Dominus 6

3 Idle Questions

We had a lot of idle questions about what ‘object-oriented’ means; how long
it takes to write a big program and how big one is; how one organizes a big
programming project, features of other languages, how widespread various lan-
guages are, and soforth. I can’t possibly remember all the nonsense we discussed,
but I do remember that there was one point I wanted to make that I didn’t get
a chance to bring up:

Copyright c©1992 Mark-Jason Dominus All rights reserved.


