1. What are the values of x, y, and z when this code is finished
executing?

int x, y, z;

x=12; y=9; z=23;
X = yH+ + 4z, y=2z/x;
if (y>x)

z = 119;

First, x gets 12, y gets 9, and z gets 23.

Then we have to evaluate x = y++ + ++z;. The value of y++ is 9, and the
compiler remembers to bump up the value of y by 1 sometime before the end
of the statement. The value of ++z is 24, which is what z will be after the
compiler bumps up the value of z by 1, which it must also do before the end of
the statement. So x gets 9 + 24, which is 33. That’s the end of the statement,
so now y and z have both been bumped, and y is 10 and z is 24.

The next statement is y = z / x;. z is 24 and x is 33, and they’re both
<int>s, so / means integer division, which means we discard the fractional
part of the result. So y gets 0.

Now y > x is false, so the computer skips the whole if statement. The final
result is: x: 33, y: 0, z: 24. These were worth a point each.

2. What are the values of x, y, and z when this code is finished
executing? (Caution! This is a trick question.)

int x, y, z;

x=12; y=9; z=23;
if (x=y)
Z *= 2;

This is a trick question because the condition in the if clause is x = y, and
not x == y. The expression x == y compares x and y, yielding true if they’re
equal and false otherwise. The expression x = y, on the other hand, assigns
the value of y to the variable x, and its value is whatever value got assigned to
x—in this case, 9. So after the condition in the if clause is evaluated, xis 9, y
is 9, and z is 23.

Now, a condition is ‘true’ when its value is not zero, and the value of this
condition is 9. Therefore the statement z *= 2; is executed. This assigns the
value 46 to z. So the final scoreis: x: 9, y: 9, z: 46. y was easy and was worth
a point; the values of the other two depended on you knowing realizing what
the = was doing and were worth two points each.

3. What does this print? And are are the values of x and y when
it is finished?

int x, y

x=7; y=9;
if (--x > 6 && y++ > 8) printf("Foo.\n");

else printf ("Bar.\n");

The thing to remember here is that && short-circuits. That means that
the compiler evaluates the left-hand part of the && expression first, and only
evaluates the right-hand part if it needs to. The value of --x is 6, and the
compiler remembers that it must decrement x before the end of the statement.
Since 6 > 6 is false, the compiler knows that whatever’s on the right of &&
is irrelevant—the whole expression will be false no matter what. So it never
evaluates the y++ > 8 part, and in particular it doesn’t evaluate y++, so y
never gets bumped.

The condition was false, so the computer jumps to the else clause and prints
Bar.. x got decremented by this time, so x is now 6. y never got incremented
at all, so y is still 9.

Getting the Bar. and the value of x were worth a point apiece; to get the
value of y you had to remember that && short-circuited and so that was worth
two points.

4. On the back of this sheet, write one sentence about each of
three things that the preprocessor does.

The three things I was looking for in particular were:
e The preprocessor removes comments, which are any text between and
including the sequences /* and */.

e The preprocessor substitutes the appropriate text for the names of mani-
fest constants that have been defined with the #define directive.

e The preprocessor incorporates the text of files included with the #include
directive into the input seen by the compiler.

Most people got at least two of these. They were worth a point each.

