
       9



Beginning programmers often wish for a way to simply tell the computer
what they want, and have the computer figure out how to do it. Declarative
programming is an attempt to do that. The idea is that the programmer will
put in the specifications for the value to be computed, and the computer will use
the appropriate algorithm.

Nobody knows how to do this in general, and it may turn out to be
impossible. But there are some interesting results we can get in specific prob-
lem domains. Regular expressions are a highly successful example of declarative
programming. You write a pattern that represents the form of the text you are
looking for, and then sit back and let the regex engine figure out the best way of
locating the matching text.

Searching in general lends itself to declarative methods: the programmer
specifies what they are searching for, and then lets a generic heuristic searching
algorithm look for it. Database query languages are highly visible examples of
this; consider SQL, or the query language of Chapter 8. The programming
language Prolog is an extension of this idea to allow general computations.

471

472         Declarative Programming

We’ve seen searching in some detail already, so in this chapter we’ll look at
some other techniques and applications of declarative programming.

9.1  

Suppose you wrote a program to translate Fahrenheit temperatures into
Celsius:

sub f2c {

my $f = shift;

return ($f - 32) * 5/9;

}

Now you’d like to have a program to perform the opposite conversion, from
Celsius to Fahrenheit. Although this calculation is in some sense the same,
you’d have to write completely new code, from scratch:

sub c2f {

my $c = shift;

return 9/5 * $c + 32;

}

The idea of constraint systems is to permit the computer to be able to run
this sort of calculation in either direction.

9.2   

One approach that seems promising is to distribute the logic for the calculation
among several objects in a constraint network as shown in Figure 9.1.

There is a node in the network for each constant, variable, and operator.
Lines between the nodes communicate numeric values between nodes, and they
are called wires. A node can set the value on one of its wires; this sends a notifica-
tion to the node at the other end of the wire that the value has changed. Because
values are propagated only from nodes to their adjacent wires to the nodes
attached at the other end of the wire, the network is called a local propagation
network.

A constant node has one incident wire, and when the network is started up,
the constant node immediately tries to set its wire to the appropriate constant

.                         473

32 * c

f

5/9

-

i

j

k

l

m

 . A constraint network for turning Fahrenheit temperatures to Celsius
and back.

value. In the network shown in Figure 9.1, wire j initially has the value 32, and
wire l initially has the value 5/9.

The nodes marked with variable names, c and f in this example, are input-
output nodes. Initially, they do nothing, but the user of the program has the
option to tell them to set their incident wires to certain values; that is how the user
sends input into the network. If an input-output node notices that its incident
wire has changed value, it announces that fact to the user; that’s how output is
emitted from the network.

We’ll use the network of Figure 9.1 to calculate the Celsius equivalent for
212 Fahrenheit. We start by informing the f node that we want f to have the
value 212. The f node obliges by setting the value of wire i to 212.

The change on wire i wakes up the attached - node, which notices that
both of its input wires now have values: Wire i has the value 212 and wire j has
the value 32. The - node performs subtraction; it subtracts 32 from 212 and sets
its output wire k to the difference, 180.

The change on wire k wakes up the attached * node, which notices that
both of its input wires now have values: Wire k has the value 180 and wire l has
the value 5/9. The * node performs multiplication; it multiplies 180 by 5/9 and
sets its output wire m to the product, 100.

The change on wire m wakes up the attached input-output node c, which
notices that its input wire now has the value 100. It announces this fact to the
user, saying something like:

c = 100

which is in fact the Celsius equivalent of 212 Fahrenheit.
What makes this interesting is that the components are so simple and

so easily reversible. There’s nothing about this process that requires that the
calculation proceed from left to right. Let’s suppose that instead of calculating
the Celsius equivalent of 212 Fahrenheit, we wanted the Fahrenheit equivalent
of 37 Celsius. We begin by informing the c input-output node that we want the

474         Declarative Programming

value of c to be 37. The c node will set wire m to value 37. This will wake up the
* node, which will notice that two of its three incoming wires have values: l has
value 5/9 and m has value 37. It will then conclude that wire k must have the
value 37/(5/9) = 66.6, and set wire k accordingly.

The change in the value of wire k will wake up the attached - node, which
will notice that the subtrahend j is 32 and the difference k is 66.6, and conclude
that the minuend, i, must have the value 98.6. It will then set i to 98.6. This
will wake up the attached f node, which will announce something like:

f = 98.6

which is indeed the Fahrenheit equivalent of 37 Celsius.
It’s no trouble to attach more input-output nodes to the network to have it

calculate several things at once. For example, we might extend the network as
shown in Figure 9.2.

Now setting c to 37 causes values to propagate in two directions. The 37 will
propagate left along wire m as before, eventually causing node f to announce the
value 98.6. But wire m now has three ends, and the 37 will also propagate right-
ward, causing the - node to set wire p to 310.15, which is the value announced
by the k node. The output looks something like:

f = 98.6

k = 310.15

which are the Fahrenheit and kelvin equivalents of 37 Celsius. Alternatively,
we could have set node k to 0, which would have resulted in wire m being set
to −273.15. Node c would announce that fact, and the * node would also

32 * c

f

5/9

-

i

j

k

l

m
- k

273.15
n

p

 . A constraint network for interconverting Fahrenheit, Celsius, and
absolute temperatures.

.                         475

take note; eventually wire i would be set to −459.67, and the output from the
entire network would be:

c = -273.15

f = -459.67

which are the Celsius and Fahrenheit temperatures of absolute zero.

9.2.1 Implementing a Local Propagation Network

Clearly we will have two kinds of objects: wires and nodes. Wires store values.
When a wire’s value is set by a node, the wire remembers the value and also which
node was responsible for setting it. This is so that the node can change or retract
the value later. If the wire didn’t remember the original source of its information,
it wouldn’t be able to distinguish the situation where the source changed its mind
from the situation in which it was being given conflicting information. We’d like
it to diagnose the latter but not the former:

package Wire; CODE LIBRARY
Wire.pm

my $N = 0;

sub new {

my ($class, $name) = @_;

$name ||= "wire" . ++$N;

bless { N => $name, S => undef, V => undef, A => [] } => $class;

}

The $name here is used for debugging purposes; we can supply a name to the
constructor, or else the constructor will auto-generate one. V will be the stored
value, initially undefined. S will be the identity of the node that supplied the
stored value (“settor”), also initially undefined. A is a list of attached nodes. When
the wire’s value changes, it will notify the attached nodes.

It’s common to need to manufacture several wires at once, so here’s a utility
function that does that:

sub make {

my $class = shift;

my $N = shift;

my @wires;

476         Declarative Programming

push @wires, $class->new while $N--;

@wires;

}

Wire->make(5) returns a list of five new wires.
The principal Wire method is set, which assigns a value to a wire:

sub set {

my ($self, $settor, $value) = @_;

if (! $self->has_settor || $self->settor_is($settor)) {

$self->{V} = $value;

$self->{S} = $settor;

$self->notify_all_but($settor, $value);

} elsif ($self->has_settor) {

unless ($value == $self->value) {

my $v = $self->value;

my $N = $self->name;

warn "Wire $N inconsistent value ($value != $v)\n";

}

}

}

The normal case is if the wire had no value before (! $self->has_settor) or if
the old settor is changing the value, in which case the wire remembers the new
value and the settor, and then calls notify_all_but() to notify the other attached
nodes that the value has changed.

The other case of interest occurs when some other node, not the original
settor, tries to notify the wire of a new value. In this case, if the old and new
values are the same, all is well, and nothing need be done. But if the values differ,
the wire should issue a diagnostic message. This might occur, for example, if we
set the Fahrenheit input of a network to 212, and then tried to set the Celsius
input to something other than 100.

The notify_all_but() function takes care of notifying the attached nodes
of a change in value:

sub notify_all_but {

my ($self, $exception, $value) = @_;

for my $node ($self->attachments) {

next if $node == $exception;

$node->notify;

}

}

.                         477

When a wire is set to a certain value, it notifies all its attached nodes of the change
except the one that set the value in the first place; this avoids infinite loops.

The accessors for attachments are trivial:

sub attach {

my ($self, @nodes) = @_;

push @{$self->{A}}, @nodes;

}

sub attachments { @{$_[0]->{A}} }

The other Wire accessor methods are similarly trivial:

sub name {

$_[0]{N} || "$_[0]";

}

sub settor { $_[0]{S} }

sub has_settor { defined $_[0]{S} }

sub settor_is { $_[0]{S} == $_[1] }

The only unusual method here is settor_is(). $wire->settor_is($node) asks
if the wire’s settor is $node, and returns true if so. Note that objects can be
compared for identity with the == operator; this actually compares the underlying
machine addresses at which the objects are stored.

The opposite of set() is revoke(), which allows the settor node to revoke
a previously set value:

sub revoke {

my ($self, $revoker) = @_;

return unless $self->has_value;

return unless $self->settor_is($revoker);

undef $self->{V};

$self->notify_all_but($revoker, undef);

undef $self->{S};

}

As far as the attached nodes are concerned, a revocation of a value is the same as
setting the value to undef.

478         Declarative Programming

The final methods in the Wire class are the ones that query a wire for its
current value. The code is short, but a little tricky. They’re almost straightforward
accessors, simply returning the value of $self->{V} or its definedness:

sub value { my ($self, $querent) = @_;

return if $self->settor_is($querent);

$self->{V};

}

sub has_value { my ($self, $querent) = @_;

return if $self->settor_is($querent);

defined $_[0]{V};

}

The exception is if the wire’s settor is asking about the value. In this case, the
wire returns undef, indicating that it doesn’t know. This is necessary to support
revocation of values. To see the reason for this, consider an adder node with
addend wires A and B, and sum wire C. Suppose A and B have been set to 1 and
2 by some other components; the adder node itself then sets the sum C to 3.
Now suppose the value of B is revoked. The adder node receives a notification
and inspects the values of the wires. If not for the special case in value(), it
would learn that A had value 1 and C had value 3, and conclude that B must
have value 2, a conclusion that is no longer warranted. To avoid this, wire C will
report a value of 3 to any other node that asks, but if the adder itself asks, the
wire will say undef, meaning “If you’re not sure what my value is supposed to be,
then I’m not sure either.”

We’ll use an abstract class to represent nodes. We could subclass this to make
the various node types, but since most of the node behavior is the same in all
node types, we won’t bother; the variable part of the behavior can be specified
by supplying an anonymous function that will be stored in the node object.

Here’s the generic constructor:

package Node;CODE LIBRARY
Node.pm my %NAMES;

sub new {

my ($class, $base_name, $behavior, $wiring) = @_;

my $self = {N => $base_name . ++$NAMES{$base_name},

B => $behavior,

W => $wiring,

};

for my $wire (values %$wiring) {

$wire->attach($self);

}

.                         479

bless $self => $class;

}

The constructor’s first argument is a node type name, such as adder, which is
used to construct a name for debugging. The important arguments are the other
two. $behavior is a function that is invoked when one of the attached wires
changes values; it is the responsibility of $behavior to calculate new values and
to propagate them through the network. $wiring is a hash whose values are the
wires themselves; each wire is associated with a name, through which $behavior

will access it.
The primary method is notify(). When a node is notified that a wire has

changed, it builds a hash of its current wire values, and passes the hash to its
behavior function:

sub notify {

my $self = shift;

my %vals;

while (my ($name, $wire) = each %{$self->{W}}) {

$vals{$name} = $wire->value($self);

}

$self->{B}->($self, %vals);

}

The rest of the Node methods are simple utilities, intended to be used by the
behavior function:

sub name {

my $self = shift;

$self->{N} || "$self";

}

wire() takes a name and returns the associated wire object:

sub wire { $_[0]{W}{$_[1]} }

sub set_wire {

my ($self, $wire_name, $value) = @_;

my $wire = $self->wire($wire_name);

$wire->set($self, $value);

}

sub revoke_wire {

my ($self, $wire_name) = @_;

480         Declarative Programming

my $wire = $self->wire($wire_name);

$wire->revoke($self);

}

We’re finally at the meat of the program; we’re ready to see the components
themselves. Here’s the behavior function for an adder:

{

my $adder = sub {

my ($self, %v) = @_;

if (defined $v{A1} && defined $v{A2}) {

$self->set_wire('S', $v{A1} + $v{A2});

} else {

$self->revoke_wire('S');

}

if (defined $v{A1} && defined $v{S}) {

$self->set_wire('A2', $v{S} - $v{A1});

} else {

$self->revoke_wire('A2');

}

if (defined $v{A2} && defined $v{S}) {

$self->set_wire('A1', $v{S} - $v{A2});

} else {

$self->revoke_wire('A1');

}

};

continues...

An adder has three wires: two addends, named A1 and A2, and a sum, named S.
When it receives a notification, it checks to see if A1 and A2 both have values; if
so, it sets S to be the sum. If not, it revokes any value that it might have given to S;
note that if S has no value, or if some other component was responsible for setting
S, the revocation is harmless, because of the way we defined the Wire::revoke()

method. There are two analogous blocks of code for inferring the two addends
from the sum.

The function to build an adder node gets three wires as arguments and
invokes Node::new() to build a node with those three wires and the adder
behavior function:

continued...

sub new_adder {

my ($a1, $a2, $s) = @_;

.                         481

Node->new('adder',

$adder,

{ A1 => $a1, A2 => $a2, S => $s });

}

}

The behavior function for a multiplier node is a little more complicated. Not
only does it need to infer a product from the two factors, and vice versa, but
when a factor is 0, it can infer the product even without the other factor:

{

my $multiplier = sub {

my ($self, %v) = @_;

if (defined $v{F1} && defined $v{F2}) {

$self->set_wire('P', $v{F1} * $v{F2});

} elsif (defined $v{F1} && $v{F1} == 0) {

$self->set_wire('P', 0);

} elsif (defined $v{F2} && $v{F2} == 0) {

$self->set_wire('P', 0);

} else {

$self->revoke_wire('P');

}

continues...

The price of this free inference, however, is that the wires can be in an inconsistent
state, which corresponds to a division by zero. If one factor is zero while the
product is nonzero, the node won’t be able to reason backwards, and will become
upset:

continued...

if (defined $v{F1} && defined $v{P}) {

if ($v{F1} != 0) {

$self->set_wire('F2', $v{P} / $v{F1});

} elsif ($v{P} != 0) {

warn "Division by zero\n";

}

} else {

$self->revoke_wire('F2');

}

482         Declarative Programming

if (defined $v{F2} && defined $v{P}) {

if ($v{F2} != 0) {

$self->set_wire('F1', $v{P} / $v{F2});

} elsif ($v{P} != 0) {

warn "Division by zero\n";

}

} else {

$self->revoke_wire('F1');

}

};

continues...

The function for building a multiplier node, new_multiplier(), is similar to
new_adder():

continued...

sub new_multiplier {

my ($f1, $f2, $p) = @_;

Node->new('multiplier', $multiplier,

{ F1 => $f1, F2 => $f2, P => $p });

}

}

We could go on and build a subtraction node, but there’s no need.

C

B

A

–

This network fragment expresses the constraint A − B = C . But that’s the same
as C + B = A, so the network shown below expresses the same thing.

A

B

C

+

.                         483

With the transformation shown above, our Fahrenheit-to-Celsius network
becomes the network shown here.

+
32

f

i
j

* c

5/9

k

l

m

But for convenience, we could define:

S - M = D

sub new_subtractor {

my ($s, $m, $d) = @_;

new_adder($d, $m, $s);

}

V / S = Q

sub new_divider {

my ($v, $s, $q) = @_;

new_multiplier($q, $s, $v);

}

if we wanted.
Now all we need are constant nodes and input-output (IO) nodes.

Constants, as you would expect, are very simple:

sub new_constant {

my ($val, $w) = @_;

my $node = Node->new('constant',

sub {},

{'W' => $w},

);

$w->set($node, $val);

$node;

}

The two arguments here are $val, the constant value, and $w, the outgoing wire.
The behavior function is trivial and does nothing. The only fine point is that

484         Declarative Programming

the constructor needs to notify the attached wire of the outgoing constant value
immediately after constructing the node, before anything else happens in the
network.

Most of the code for IO nodes is for announcing changes in values on the
one attached wire. $announce is a curried function. Its argument is the name of
the IO node, and it returns a behavior function for that node:

{

my $announce = sub {

my $name = shift;

sub {

my ($self, %val) = @_;

my $v = $val{W};

if (defined $v) {

print "$name : $v\n";

} else {

print "$name : no longer defined\n";

}

};

};

continues...

The IO node itself is an ordinary node with this announcing behavior:

continued...

sub new_io {

my ($name, $w) = @_;

Node->new('io',

$announce->($name),

{ W => $w });

}

}

There are two utility functions exposed to the main program for setting and
revoking the values of IO nodes:

sub input {

my ($self, $value) = @_;

$self->wire('W')->set($self, $value);

}

.                         485

sub revoke {

my $self = shift;

$self->wire('W')->revoke($self);

}

We can now build local propagation networks:

my ($F, $C);

{ my ($i, $j, $k, $l, $m) = Wire->make(5);

$F = new_io('Fahrenheit', $i);

$C = new_io('Celsius', $m);

new_constant(32, $j);

new_constant(5/9, $l);

new_adder($i,$k,$j);

new_multiplier($k,$l,$m);

}

And now we can use the network to calculate values:

input($F, 212);

Celsius : 100

input($F, 32);

Celsius : 0

revoke($F);

Celsius : no longer defined

input($C, 37);

Fahrenheit : 98.6

input($F, 100);

Wire wire3 inconsistent value (100 != 98.6)

revoke($C);

Fahrenheit : no longer defined

input($F, 100);

Celsius : 37.7777777777778

We can extend the network to handle kelvins by adding:

my ($F, $C);

my $K;

{ my ($i, $j, $k, $l, $m) = Wire->make(5);

$F = new_io('Fahrenheit', $i);

$C = new_io('Celsius', $m]);

486         Declarative Programming

new_constant(32, $j);

new_constant(5/9, $l);

new_adder($i,$k,$j);

new_multiplier($k,$l,$m);

my ($n, $p) = Wire->make(2);

$K = new_io('kelvin', $n);

new_constant(273.15, $p);

new_adder($m, $p, $n);

}

The final adder node expresses the constraint that C + 273.15 = K . Note that
the wire $m has been attached to three nodes, as shown here.

+ k

273.15
p

n

+
32

f

i
j

* c

5/9

k

l

m

These definitions of local propagation networks are quite verbose, but it’s easy
to imagine attaching a front-end that would allow the programmer to enter the
desired constraints in ordinary algebraic notation:

C = (F+32)*5/9 ;

K = C + 273.15 ;

The front-end would have a parser for expressions like the ones we’ve already
seen. The output from the parser would be a constraint network corresponding
to the input expressions. Central to the parser would be productions like these,
that would build up the appropriate constraint network as the input expression
was analyzed:

$expression = operator($Term,

[lookfor(['OP', '+']),

.                         487

sub { my $sum = Wire->new;

new_adder($_[0], $_[1], $sum);

return $sum;

}

[lookfor(['OP', '-']),

sub { my $difference = Wire->new;

new_adder($difference, $_[1], $_[0]);

return $difference;

}

);

9.2.2 Problems with Local Propagation

If you’ve ever seen a discussion of local propagation networks before, you’ve
probably seen the Fahrenheit-Celsius converter example. There’s a good reason
for this: It’s one of the few examples for which local propagation actually works.

Let’s consider a different problem, almost as simple. Suppose we’re building
a drawing system. A horizontal line has two endpoints at (x1, y) and (x2, y).
Its center point is at (c, y), and its length is l . y is independent of the other
parameters, but any two of x1, x2, c, and l determine the other two. We might
reason that the center point is the one that is the same distance from each
endpoint, and define the center point with the equation:

c − x1 = x2 − c

The length, of course, is the distance between the endpoints:

x2 − x1 = l

These two constraints yield the network shown here.

x2

c

+ +

+

x1
n

o

q

m

p

l

488         Declarative Programming

If we set x1 to 3 and c to 5, everything works out. The 5 is propagated along
wire n to the leftmost + node, which sets wire m to 2. This value, plus the 5
reaching the upper-right + node along wire n, causes wire o to be set to 7, which
is reported as the value of x2. Wire o, carrying 7, and wire p, carrying x1’s value
of 3, arrive at the lower + node, allowing the network to deduce that the value
of l is 4.

But suppose instead we set x1 to 3 and x2 to 7. The two values arrive at
the lower + node, allowing the calculation of l as before. But there’s a problem
in the upper part of the diagram. Each of the two upper + nodes has only one
defined input. Neither m nor n is defined, and each is needed for the deduction
of the other one. Since wire n defines the value of c, the network has failed.
Similarly, although the network above can compute x2 from x1 and l , it fails to
compute c.

This kind of problem often arises when local constraint networks contain
loops. In general, we can’t avoid constraints that result in loops, so we need
another technique.

One technique that’s commonly used in such cases is called relaxation. We
tell the network to guess a value for c, and to compute the consequences of the
guess. In general, this will result in an inconsistent network. In the preceding
example, we might guess that c is 0. This means that n is 0, and then the two
upper addition nodes can compute values for wire m. The leftmost one com-
putes that m is −3, and the rightmost one that m is −7. These are inconsistent,
so the network averages them, getting −4, and tries that out as a value for m.
If m is −4, then the two addition nodes want to set wire n to −1 and to 11,
respectively. So the network once again tries the average, 5, for n. This time, the
two addition nodes agree that m should be 2 — so the relaxation is complete,
and has solved the constraint equations.

As with nearly all numerical techniques, relaxation is fraught with peril.
Sometimes the relaxation process will diverge: Instead of reaching the correct
value, the successive steps produce more and more grossly incorrect values. Some-
times the relaxation process converges slowly to the correct values, getting closer
and closer but never quite making it.

Getting local propagation networks to work well is an active research area.
I introduced the technique because it’s an interesting exercise and a good intro-
duction to the idea of constraint systems. But for the rest of the chapter, we’re
going to go a different way.

9.3   

As a large example, we’ll develop a system, called linogram, for drawing diagrams.

.                489

Diagrams are usually drawn with a WYSIWYG structured drawing system.
The big drawback of this kind of system is that if you want to change the
diagram globally, you essentially have to start over. For example, suppose you
were drawing a family tree, and you decided to represent each person with a
rectangle 0.75 inches wide by 0.5 inches tall. You get the diagram done, but then
you learn that the diagram will need to be printed in landscape mode, rather
than portrait mode. You want to make the boxes shorter, to fit on the shorter
page, but wider, to fit the text in — say 1 inch wide and only 0.4 inches tall.
Also, you want to see how the diagram looks if the corners of the boxes are
rounded off.

In the typical structured drawing system, you’d have to manually adjust each
box and the text inside it. In a declarative drawing system, however, this kind
of change is easy. A diagram is like a program, and there is a definition in the
program that describes the kind of box you want to use for a person. By changing
the definition, you change every box of that type in the entire diagram.

In the declarative drawing system, you can tell the computer to calculate the
positions and sizes of drawing elements based on the positions and sizes of other
elements. So, for example, you can easily tell the system that you want all the
squares to be made into rectangles, or all the straight arrows made into curved
arrows, or all the parts of the diagram that represent widgets to be drawn with
three round knobs instead of two square knobs, just by changing a small part of
the description of the diagram.

Since the input to the declarative system is a plain text file, it’s also easy to
get another program to generate diagrams as output.

If we’re going to describe objects by giving constraints, we need some way
of solving the constraints to figure out where the objects actually are. As we
saw, local propagation won’t do it. In general, the problem is very difficult,
because constraints are equations, so solving constraints means solving equa-
tions. If solving equations were easy, we wouldn’t have to suffer through four
years of high school algebra learning how to do it, and we wouldn’t need
mathematicians to figure it out.

For general geometric problems, we have to solve general sorts of equations;
these may involve higher algebra, or even trigonometry. There is one kind of
equation, however, that’s easy to solve. Linear equations are easy. The solution of:

ax + b = c

is:

x = c − b
a

490         Declarative Programming

Because diagrams usually involve many straight lines, linear equations usu-
ally do most of what we want. The kind of curves that appear in diagrams
are unusually simple and highly constrained. It may require advanced mathe-
matics to find the intersection of a lemniscate and a cardioid, but how often
do you draw a diagram with a lemniscate and a cardioid? Diagrams do involve
circles (which potentially opens up a can of trigonometric worms), but typically
the circle is used as just another kind of box. If we allow drawing elements to
be attached to circles only at the “corners” (the northmost, northwestmost, etc.
points) then the circle is essentially an octagon as far as the equations are con-
cerned; then once we figure out where the corners are located, we can join them
with curves instead of straight sides.

9.4 l i n o g r a m :   

The entities with which our program deals are called features. A feature repre-
sents something like a box or a line. It might contain sub-features; for example,
a box feature contains four sub-features that represent its four sides. A feature also
contains a list of constraint equations that define the relationships between its
sub-features; for example, in a box feature, the top and left sides are constrained
to start at the same point.

The input to the drawing system will be a specification for a large compound
feature, called the root feature, which represents the entire drawing. Here’s an
example specification for a root feature:

box F, plus, con32, times, C, con59;

line i, j, k, l, m;

number hspc, vspc, boxht, boxwd;

constraints {

boxht = 1; boxwd = 1;

hspc = 1 + boxwd; vspc = 1 + boxht;

F.ht = boxht; F.wd = boxwd;

plus = F + (hspc, 0);

con32 = plus + (hspc, 0);

times = plus + (0, vspc);

C = times + (hspc, 0);

con59 + (hspc, 0) = times;

. linogram:               491

i.start = F.e; i.end = plus.nw;

j.start = plus.e; j.end = con32.w;

k.start = plus.sw; k.end = times.nw;

l.start = con59.e; l.end = times.sw;

m.start = times.e; m.end = C.w;

F.nw = (0,0);

}

The first three lines declare the sub-features of the root feature; it contains six
boxes, five lines, and four numbers. Numbers are primitive, and don’t contain
sub-features. The numbers hspc and vspc will be used to determine the amount
of space between the boxes. If we want to move all the boxes closer together in
the horizontal direction, we will need only to change the definition of hspc to a
smaller value. Similarly, boxht and boxwd will be the height and width of each of
the six boxes.

The constraints section is the really interesting part. It’s a list of lin-
ear equations that specify the sizes and relative locations of the boxes and
lines. The first four equations define the four numeric parameters boxht,
boxwd, hspc, and vspc. hspc represents the minimum center-to-center hori-
zontal separation of two nearby boxes, so it’s defined in terms of boxwd: The
distance between the two centers is the width of one box, plus one unit of
space.

The next two equations define the height and the width of the F box by
establishing constraints on its subfeatures F.ht and F.wd. The definition of the
box type (which we’ll see later) contains a declaration like:

number ht, wd;

to say that every box has these two properties, and other declarations that relate
these numbers to the positions of the four sides.

The next equation,

plus = F + (hspc, 0);

constrains the size, shape, and position of the plus box. The (hspc, 0) is called
a tuple expression and represents a displacement. The constraint says that the box
plus is exactly like F, only displaced eastward by hspc units and southward by 0
units. Internally, this will translate into a series of constraints that force each of
plus’s four corners and four sides to be hspc units east and 0 units south of the
corresponding corners and sides of F.

492         Declarative Programming

Although this equation looks like an assignment, it isn’t; it’s a declaration.
If linogram knows about F, it can deduce the corresponding information about
plus— or vice versa. It can also deduce complete information about both from
partial information. For example, if only the left side of F and the top side of
plus are known, then the other sides of the two boxes can all be deduced: The
left side of plus is like the left side of F, and the top side of F is like the top side
of plus.

We could also have written this equation in any of these mathematically
equivalent forms:

F + (hspc, 0) = plus;

plus + (-hspc, 0) = F;

plus - F = (-hspc, 0);

plus - (hspc, 0) - F = 0;

Sometimes it’s convenient to write equations like this. For example, suppose
we have four features, A, B, C, and D. We’re not sure where A, B, and C are, but
we know that we want D’s position relative to C to be the same as B’s position
relative to A— if B is one furlong due north of A, we want D one furlong due
north of C, or whatever. It’s quite straightforward and intuitive to express it
like this:

D - C = B - A;

Or suppose we wanted point Z to be one-third of the way from X to Y along the
straight line between them:

Z - X = 1/3 * (Y - X);

In addition to a height and a width, every box has thirteen more subfeatures:
four lines and nine points. The lines represent the four sides, and are named
top, bottom, left, and right. The points aren’t strictly necessary, but they’re
convenient. They are the four corner points, called nw, ne, sw, and se, the
midpoints of the four sides, called n, s, e, and w, and the center point, called c.

Similarly, a line contains two sub-features, called start and end, that denote
its two endpoints.

The next few declarations in our specification define the endpoints of the
five lines i through m.

The declarations:

i.start = F.e; i.end = plus.nw;

. linogram:               493

constrain line i to start at the midpoint of F’s east side, and to end at the
northwest corner of box plus.

Finally, we have to tell the program the absolute location of at least one of the
features, or it won’t be able to figure out where anything is located. We force the
issue by attaching the northwest corner of box F arbitrarily to (0,0), although it
doesn’t really matter; we could as easily have attached any other point of any of
the boxes.

In addition to these manifest constraints, there are a large number of hidden
constraints that we don’t see, inherent in the definitions of the box and line

types. For example, the definition of box has, among others,

top.start = left.start;

nw = top.start;

top.start + wd = top.end;

n = top.center;

...

and the definition of line has:

center = (start + end)/2;

Again, although this looks like an assignment, it isn’t; it’s symmetric. If the start
and end points of the line are known, the center will be calculated from them;
if the start and center are known instead, the position of the end point will be
calculated instead. Any two of the points imply the third.

The program’s strategy for drawing a diagram is as follows. First it will read in
the definition of the root feature, including the implied definitions of common
sub-features such as box. It will accumulate a large set of linear constraint equa-
tions. These will include the explicit constraints, as well as many automatically
generated implicit constraints. If the root feature contains a box named F, then
it will also include F’s constraints implicitly, in the form of equations like these:

F.top.start = F.left.start;

F.nw = F.top.start;

F.top.start + F.wd = F.top.end;

F.n = F.top.center;

...

In fact, since F itself contains several sub-features, it will inherit constraints from
these. F’s top side is a line, so F will inherit the constraint:

top.center = (top.start + top.end)/2;

494         Declarative Programming

from the definition of line; this will in turn be inherited by the root fea-
ture as:

F.top.center = (F.top.start + F.top.end)/2;

After accumulating all the constraint equations, the program will solve the
equations. The result will be a complete description of where every part of each
feature is located.

Associated with each feature will be one or more drawing functions. The
program will invoke the drawing functions for each feature, passing them a hash
containing the relevant variables. It’s up to the drawing functions to generate the
appropriate output. The output might be instructions in PostScript to be sent
to a printer, or perhaps a “canvas” object containing a bitmap of the finished
diagram.

Before we go any further with the main program, let’s look at the definitions
of the simpler sub-features such as boxes, which will be instructive. The simplest
features that the program deals with are numbers, which are atomic. These are
the only features whose definitions are built into the program. All other features
are defined by a library file that specifies the feature’s sub-features, constraints,
and drawing methods.

After a number, the simplest feature is a point, which has x and y coordinates,
but no constraints on them:

define point {

number x, y;

}

When linogram wants to draw a feature, its default behavior is to recursively
draw all the feature’s sub-features. Thus it draws a point by trying to “draw” the
two numbers x and y. Numbers are considered to be invisible, so the aggregate
behavior for drawing a point is also to do nothing. The simplest visible feature
is a line, which has start and end points:

define line {

point start, end, center;

constraints { center = (start + end)/2; }

draw { &draw_line; }

}

As mentioned before, a line also has a center point, for convenience; it’s
constrained to be halfway between the start and end points (see Figure 9.3).

. linogram:               495

start
(start.x, start.y)

center
(center.x, center.y)

end
(end.x, end.y)

 . A line and its subfeatures.

The draw section is new. The declaration shown here is the name of a Perl
subroutine responsible for drawing the feature. The & is a lexical marker that
indicates that this is the name of a subroutine. When invoked, the subroutine
will be passed a hash that indicates the positions of the sub-features of the line:

("start.x" => 5, "start.y" => 3,

"end.x" => 3, "end.y" => 7,

"center.x" => 4, "center.y" => 5,

)

If any of the sub-features are unknown, they’ll be omitted from the hash; in
that case, the function should complain. Since this chapter is about declarative
programming, and not about graphics, we’ll weasel out of doing any actual
drawing, and use the following drawing function, which claims to draw lines
even though it doesn’t really draw anything. It does, however, give us a clear
description of the line it would have drawn, which is enough to see whether the
program is doing what it should be doing:

sub draw_line {

my $env = shift;

my $GOOD = 1;

for my $k (qw(start.x start.y end.x end.y)) {

unless (defined $env->{$k}) {

warn "Can’t draw line because '$k' is missing\n";

$GOOD = 0;

}

}

if ($GOOD) {

print "Drawing line from ($env->{'start.x'}, $env->{'start.y'})

to ($env->{'end.x'}, $env->{'end.y'})\n";

}

}

496         Declarative Programming

Given the preceding hash, this will produce the output:

Drawing line from (5, 3) to (3, 7)

Even though we weaseled out of the drawing, creating a diagram in PostScript
is barely more difficult. We would need to generate output something like this:

50 30 moveto 30 70 lineto stroke

This is almost the same, but there are a (very) few additional complications that I
didn’t want to have to consider, so we’ll stick with the weasel drawing technique.

The other possible inhabitants of a draw section are the names of some of
the sub-features that make up the feature. Only these sub-features will be drawn.
If there is no draw section at all, the default is to draw all the sub-features.

We have enough machinery now to define boxes directly, but linogram’s
standard library goes through a set of intermediate definitions first. The top and
bottom sides of a box are constrained to be horizontal, and it’s convenient to
define a new feature type to represent a horizontal line:

define hline extends line {

number y, length;

constraints {

start.y = end.y;

start.y = y;

start.x + length = end.x;

}

}

This defines a new type, called hline, which has all of the sub-features and
constraints that an ordinary line has, and some additional ones. The start and
end points must have the same y-coordinate, and an hline also has an additional
sub-feature, called y, which is defined to be equal to this y-coordinate. If we
were trying to specify the location of a box F, this would allow us to abbreviate
F.top.start.y as simply F.top.y, which is more natural. An hline also has
a length, which is the distance between the endpoints. In general, the length
of a line is not a linear function of the positions of the endpoints (because
length = sqrt((end .x − start .x)2 + (end .y − start .y)2)) and computing one point
given the length and the other endpoint requires trigonometry, which linogram

won’t do. But for horizontal lines, the calculation is trivial.
The constraints in this definition are adjoined to those inherited from line,

which imply the position of the center point of an hline, even though we never

. linogram:               497

mentioned it explicitly. The draw section is also inherited from line, so that the
Perl draw_line function will be used for hline as well.

Vertical lines are almost exactly the same:

define vline extends line {

number x, height;

constraints {

start.x = end.x;

start.x = x;

start.y + height = end.y;

}

}

Now we’re ready to define box. It has a lot of machinery, but none of it is new:

define box {

vline left, right;

hline top, bottom;

point nw, n, ne, e, se, s, sw, w, c;

number ht, wd;

constraints {

left.start = top.start;

right.start = top.end;

left.end = bottom.start;

right.end = bottom.end;

nw = left.start;

ne = right.start;

sw = left.end;

se = right.end;

n = top.center;

s = bottom.center;

w = left.center;

e = right.center;

c = (n + s)/2;

ht = left.height;

wd = top.length;

}

}

498         Declarative Programming

nw

w

sw

ne

e

se

top

left right

bottom

wd

ht

n

c

s

 . A box and its subfeatures.

A box has a left and a right side, which are vlines, and a top and a bottom side,
which are hlines. It has nine named points, which are identical to various parts
of the four sides, except for c, the center, which is halfway between the north
and south points. It also has a height and a width, which are the same as the
lengths of the left and top sides, respectively (see Figure 9.4). We didn’t need to
require that ht = right.height; this is already implicit in the other equations,
although it wouldn’t have hurt to put it in.

The box definition doesn’t contain a draw section. The default behavior is
for linogram to draw a box by drawing each of its fifteen sub-features. For the
nine points and the two numbers, this does nothing at all; the other four sub-
features are the four sides, which linogram draws by calling draw_line. Each box
will therefore result in four calls to draw_line, which is just what we want.

To define a square, we need only write:

define square extends box {

constraints { ht = wd; }

}

which defines a square to be the same as a box but with the height and width
constrained to be equal. Another common constituent of diagrams is an arrow.
From linogram’s point of view, this is nothing more than an oddly-drawn line:

define arrow extends line {

draw { &draw_arrow; }

}

. linogram:               499

An arrow has a start and end point, just like a line; these are the start and end
points of the arrow’s shaft. The draw_arrow function is responsible for drawing
the shaft (which it can do by calling draw_line) and then filling in the two
whiskers at the endpoint.

If we’re feeling creative, we might go on:

define golden_rectangle extends box {

constraints { ht * 1.618 = wd; }

}

define circle {

number r, d;

point c, nw, n, ne, e, se, s, sw, w;

constraints {

d = 2*r;

n = c - (0, r);

s = c + (0, r);

e = c + (r, 0);

w = c - (r, 0);

se = c + (r, r)/1.4142;

sw = c + (-r, r)/1.4142;

ne = c + (r,-r)/1.4142;

nw = c + (-r,-r)/1.4142;

}

draw { &draw_circle; }

}

define diamond extends box {

line nw_side(start=n, end=w),

sw_side(start=s, end=w),

ne_side(start=n, end=e),

se_side(start=s, end=e);

draw { nw_side;

sw_side;

ne_side;

se_side;

}

}

500         Declarative Programming

The nw_side(start=n, end=w) declaration in the last definition is a short-
hand for:

line nw_side;

constraints { nw_side.start = n;

nw_side.end = w;

}

linogram has a few other features, but we’ll see them in the course of seeing
the program code. The program code comprises three major classes and several
less-important classes. The three major classes are Constraint, which represents
constraints; Type, which represents feature types such as box and line; and Value,
which represents the value of an expression as it is being converted to a set of
constraints. We’ll see constraints and equations first.

9.4.1 Equations

The heart of linogram will be the module that solves systems of linear
equations. The usual way to do this is to represent the system as a matrix, and
then perform sequences of matrix transformations on it until the matrix is in a
canonical form; this is called Gaussian elimination. Methods for doing this are
well studied, and also available on CPAN. But for various reasons, the CPAN
modules I found for solving linear equations didn’t seem to be what I wanted,
so I’ll develop one here.

An Equation object is a hash. The equation:

14x + 9y − 3.5z = 28

is represented by the hash:

{ "x" => 14,

"y" => 9,

"z" => -3.5,

"" => -28,

}

The values 14, 9, and −3.5, are called the coefficients of x, y, and z, respectively.
The −28 is the constant part. It’s negative because the equation is actually:

14x + 9y − 3.5z − 28 = 0

. linogram:               501

The "" key in the hash is mandatory because every linear equation has a constant
part, even if the constant part is 0. The equation:

x = 0

corresponds to the hash:

{ "x" => 1,

"" => 0,

}

and the trivial equation 0 = 0 is represented by the hash { "" => 0 }.
Manipulating equations through these hashes is straightforward and easy

to debug, although slow. If speed is an issue, the Equation module of the pro-
gram should be replaced with one that uses a more abbreviated representation of
equations, perhaps one implemented in C.

The constructor function takes an argument hash and puts it into a
canonical form:

sub new { CODE LIBRARY
Equation.pmmy ($base, %self) = @_;

$class = ref($base) || $base;

$self{""} = 0 unless exists $self{""};

for my $k (keys %self) {

if ($self{$k} == 0 && $k ne "") { delete $self{$k} }

}

bless \%self => $class;

}

If the constant part is missing, the constructor sets it to 0; if the coefficients
of any of the variables are 0, they are deleted. For example, ->new("x" => 0,

"y" => 1), which represents 0x + 1y = 0, is turned into { "y" => 1, "" => 0 }.

ref($base) || $base

One idiom used here and elsewhere that you may not have seen is the
ref($base) || $base trick. The goal is to write a function that can be called
as either an object or a class method, either as:

Equation->new(...)

502         Declarative Programming

or as;

$some_equation->new(...)

In the former case, $base is the string Equation, and ref $base is false, since
$base is a string rather than a reference. $class is therefore set equal to $base.
In the latter case, $base is the object $some_equation, and ref($base) is the
class into which $some_equation was blessed. $class is therefore set equal to
$some_equation’s class. This is convenient when we’ll be writing several other
constructor methods that might get an Equation object as an argument and will
want to create another object similar to it. For example, here’s a method that
makes a copy of an Equation object:

sub duplicate {

my $self = shift;

$self->new(%$self);

}

Note that:

WRONG!

sub duplicate {

my $self = shift;

Equation->new(%$self);

}

doesn’t work properly if its argument is an object of a class derived from
Equation. The correct code creates a new object from the same derived subclass;
the incorrect code creates a new Equation object regardless.

        

For convenience, we set up a constant for the important trivial equation 0 = 0:

BEGIN { $Zero = Equation->new() }

Equations have three important accessors. One retrieves the coefficient of
a given variable:

sub coefficient {

my ($self, $name) = @_;

. linogram:               503

$self->{$name} || 0;

}

The second recovers the constant part:

Constant part of an equation

sub constant {

$_[0]->coefficient("");

}

The other returns the names of all the variables that the equation mentions:

sub varlist {

my $self = shift;

grep $_ ne "", keys %$self;

}

All equations can be scaled and added. If an equation is known to be true, you
can multiply its constant and its coefficients by any number n, and the resulting
equation is also true. For example, if:

14x + 9y − 3.5z = 28

then we can scale all the numbers by 2 and get:

28x + 18y − 7z = 56

which is equivalent.
If we have two equations that are true, we can add them together and get

another true equation. For example, suppose we have:

x = 13

2y = 7

we can add these, getting:

x + 2y = 20

504         Declarative Programming

These two operations are fundamental to all methods of solving linear
equations. For example, suppose we have:

x + y = 12

x − y = 2

If we add these two equations together, the +y in the first and the −y in the
second cancel, yielding:

2x = 14

which we can then scale (by 1/2) to yield:

x = 7

We can then scale this by −1, yielding:

−x = −7

When we add this last equation to the very first equation, the x’s cancel, and
we’re left with:

y = 5

And in fact x = 7, y = 5 is the solution of the equations.
The most important function in the Equation module is arithmetic(),

which scales and adds equations:

sub arithmetic {

my ($a, $ac, $b, $bc) = @_;

my %new;

for my $k (keys(%$a), keys %$b) {

my ($av) = $a->coefficient($k);

my ($bv) = $b->coefficient($k);

$new{$k} = $ac * $av + $bc * $bv;

}

$a->new(%new);

}

Given two equations, $a and $b, and two numbers, $ac and $bc, arithmetic()
scales $a by $ac, scales $b by $bc, and adds the two scaled equations together.
Built atop this base are several simpler utility functions. For example, to add two

. linogram:               505

equations together, we use arithmetic(), with both scale factors set to 1:

sub add_equations {

my ($a, $b) = @_;

arithmetic($a, 1, $b, 1);

}

Similarly, to subtract one equation from another is the same as adding them,
but with the second one negated:

sub subtract_equations {

my ($a, $b) = @_;

arithmetic($a, 1, $b, -1);

}

Scaling a single equation is yet another special case, where the second equation
is zero:

sub scale_equation {

my ($a, $c) = @_;

arithmetic($a, $c, $Zero, 0);

}

Now suppose we have two equations:

ax + some other stuff = c

bx + more stuff = d

Here we can eliminate x from the first equation by scaling the second by −a/b
and adding the result to the first equation. The function substitute_for()

is for eliminating a variable from an equation. The call:

$first->substitute_for("x", $second);

eliminates variable "x" from equation $first in this way, by combining it
with an appropriately scaled version of $second:

Destructive

sub substitute_for {

506         Declarative Programming

my ($self, $var, $value) = @_;

my $a = $self->coefficient($var);

return if $a == 0;

my $b = $value->coefficient($var);

die "Oh NO" if $b == 0; # Should never happen

my $result = arithmetic($self, 1, $value, -$a/$b);

%$self = %$result;

}

If $a is zero, then the first equation didn’t contain the variable we were trying
to eliminate, so nothing needs to be done. The "Oh NO" case occurs when the
second equation doesn’t contain the variable we’re trying to eliminate; in this
case there’s no way to use it to eliminate the variable from the first equation.
Note that the function is destructive: It modifies $self in place.

The cost of eliminating a variable like x is that the resulting equation
might be more complicated than what we started with, depending on what
else is in the equation we’re using to reduce it. If we’re not careful, we might even
get stuck in an infinite loop. Suppose we had:

x + y = 3

y + z = 5

and we scale the second equation by −1 and add it to the first, to eliminate y:

x − z = −2

If we then add this equation to the second one to eliminate z, we’re back where
we started.

We’ll adopt a simple strategy that prevents infinite loops. We’ll take the first
equation and use it to completely eliminate one of its variables from all the other
equations. The variable will be present in that first equation only, so as long as
we don’t use the first equation again, we can’t possibly reintroduce that variable.
We’ll then move to the second equation and use it to eliminate one of its variables
from all the other equations. We’ll repeat this for each equation.

To that end, here’s a method that returns an arbitrarily chosen variable from
an equation:

sub a_var {

my $self = shift;

. linogram:               507

my ($var) = $self->varlist;

$var;

}

Let’s see a small example of how this works. Consider the equations:

A : x + 2y = 8

B : 2y + z = 10

C : x + y + 2z = 13

First we use A to eliminate x from the other two equations. For equation B
there is nothing to do; eliminating x from C leaves:

A : x + 2y = 8

B : 2y + z = 10

C : − y + 2z = 5

Now we use B to eliminate y from the other two equations. Eliminating y
from A leaves:

A : x − z = −2

B : 2y + z = 10

C : − y + 2z = 5

Eliminating y from C leaves:

A : x − z = −2

B : 2y + z = 10

C : 2.5z = 10

Finally, we use C to eliminate z from the other two equations:

A : x = 2

B : 2y = 6

C : 2.5z = 10

At this point we have finished one complete pass through all the equations, so
we are done. There’s a final step that needs to be done to put the equations in

508         Declarative Programming

standard form: We must adjust the coefficients to 1:

A : x = 2

B : y = 3

C : z = 4

but this is a simple scaling operation.
Solving entire systems of equations is the job of the Equation::System

module, whose objects represent whole systems of equations:

package Equation::System;

sub new {

my ($base, @eqns) = @_;

my $class = ref $base || $base;

bless \@eqns => $class;

}

In the course of solving a system of equations, we often find that some of them
are redundant. The way this appears in the mathematics is that we reduce an
equation and find that we have nothing left. (That is, nothing but 0 = 0,
which adds no useful information.) We can detect such a ghostly equation
with Equation::is_tautology:

package Equation;

sub is_tautology {

my $self = shift;

return $self->constant == 0 && $self->varlist == 0;

}

In such a case, we’ll replace the ghostly equation with undef.
The important accessor for an Equation::System recovers the current list

of equations, ignoring the ones we have nulled out:

package Equation::System;

sub equations {

my $self = shift;

grep defined, @$self;

}

. linogram:               509

A typical operation on a system of equations will be to transform each equation
in some way:

sub apply {

my ($self, $func) = @_;

for my $eq ($self->equations) {

$func->($eq);

}

}

Now we’re ready to see Equation::System::solve, the end product of all this
machinery.

sub solve {

my $self = shift;

my $N = my @E = $self->equations;

for my $i (0 .. $N-1) {

next unless defined $E[$i];

my $var = $E[$i]->a_var;

for my $j (0 .. $N-1) {

next if $i == $j;

next unless defined $E[$j];

next unless $E[$j]->coefficient($var);

$E[$j]->substitute_for($var, $E[$i]);

if ($E[$j]->is_tautology) {

undef $E[$j];

} elsif ($E[$j]->is_inconsistent) {

return ;

}

}

}

$self->normalize;

return 1;

}

The main loop selects an equation number i, selects one if its variables, $var,
and then scans over all the other equations j reducing each one to remove $var.
If the result is the trivial equation 0 = 0, equation j is nulled out.

After each reduction, we test the resulting equation to make sure it makes
sense. If we get an equation like 1 = 0, we know something has gone wrong.

510         Declarative Programming

This will occur if the original equations were inconsistent. For example:

start .y = 1;

y = 2;

start .y − y = 0;

Eliminating start.y from the others yields:

start .y = 1;

y = 2;

− y = −1;

Then using the second equation to eliminate y from the others yields:

start .y = 1;

y = 2;

0 = 1;

which is no good, because it says that 0 = 1. The Equation::is_inconsistent

method detects bad equations like 0 = 1 that have no variables, but whose
constant part is nonzero:

package Equation;

sub is_inconsistent {

my $self = shift;

return $self->constant != 0 && $self->varlist == 0;

}

When the main loop is finished, we hope that the equations in the system
have been reduced to the point where they contain only one variable each. As we
saw, the equations might need one final adjustment. An equation like this:

2y = 6

should be adjusted to this:

y = 3

. linogram:               511

The Equation::System::normalize method adjusts the equations in this way:

package Equation::System;

sub normalize {

my $self = shift;

$self->apply(sub { $_[0]->normalize });

}

To normalize a single equation, we scale it appropriately:

package Equation;

sub normalize {

my $self = shift;

my $var = $self->a_var;

return unless defined $var;

%$self = %{$self->scale_equation(1/$self->coefficient($var))};

}

An equation like y = 3 is so simple that even the computer understands what
it means. We say that this equation defines the variable y. The defines_var()

method reports on whether an equation defines a variable:

sub defines_var {

my $self = shift;

my @keys = keys %$self;

return unless @keys == 2;

my $var = $keys[0] || $keys[1];

return $self->{$var} == 1 ? $var : () ;

}

To define a variable, an equation must have the form var = val , and so
must contain exactly two keys. One is the name of the variable; the other
is the empty string. Moreover, the coefficient of the one variable must be 1.
If all this is true, defines_var() returns the name of the variable so defined.
The value of the variable can be recovered with - $equation->constant. (The
minus sign is because y = 7 is represented as y − 7 = 0, which is { y => 1,

"" => -7 }.)
The main entry to the equation-solving subsystem for outside functions is

the values() method. This takes a system of equations, solves the equations,

512         Declarative Programming

and returns a hash that maps the names of known variables to their values:

package Equation::System;

sub values {

my $self = shift;

my %values;

$self->solve;

for my $eqn ($self->equations) {

if (my $name = $eqn->defines_var) {

$values{$name} = -$eqn->constant;

}

}

%values;

}

1;

       

linogram will have another class, called Constraint, which represents con-
straints. Since constraints are essentially equations, Constraint will be a derived
class of Equation:

package Constraint;CODE LIBRARY
Constraint.pm use Equation;

@Constraint::ISA = 'Equation';

Constraint adds a few utility methods to Equation that make more sense in the
context of linogram than in the general context of equation solving. The most
important is qualify(). A type like hline contains the constraint start .y − y =
0. But when considered as part of a box, the hline has a name like top or
bottom, and the constraint, when translated into the context of the box, turns
into top.start .y − top.y = 0. qualify() takes a constraint and a name prefix
and produces a new, transformed constraint:

sub qualify {

my ($self, $prefix) = @_;

my %result = ("" => $self->constant);

. linogram:               513

for my $var ($self->varlist) {

$result{"$prefix.$var"} = $self->coefficient($var);

}

$self->new(%result);

}

Constraint’s other methods are simple things. In some places inside linogram,
constraints are used as if they were expressions; when there is an expression with
an addition in the drawing specification, we have to add together constraints.
We’ll see this in more detail later; in the meantime, new_constant()manufactures
a constraint like 0 = 0 or 0 = 1 that plays the role of a constant expression:

sub new_constant {

my ($base, $val) = @_;

my $class = ref $base || $base;

$class->new("" => $val);

}

add_constant() adds a constant to a constraint, transforming something like
x = 0 to something like x = 3, and mul_constant() multiplies a constraint
by a constant, transforming something like x = 3 to something like 4x = 12:

sub add_constant {

my ($self, $v) = @_;

$self->add_equations($self->new_constant($v));

}

sub mul_constant {

my ($self, $v) = @_;

$self->scale_equation($v);

}

All the other methods of Constraint are inherited from Equation.
Analogous to Constraint, there is a Constraint_Set class that is derived

from Equation::System. It’s even simpler than Constraint. It has only one extra
method:

package Constraint_Set;

@Constraint_Set::ISA = 'Equation::System';

sub constraints {

514         Declarative Programming

my $self = shift;

$self->equations;

}

1;

9.4.2 Values

In the course of reading and parsing the specification, we’ll need to deal with
expressions. We saw the parsing end of this in detail in Chapter 8. The question
that arises is what the values of the expressions will be; the answer turns out to
be quite interesting. Values are not always numbers. For example, consider:

point P, Q;

P + (2, 3) = Q;

Here we have an expression P + (2, 3). The value of this expression isn’t
a simple number. It implies parts of two constraints, involving P.x and P.y. Later
on, these partial constraints must be combined with Q to yield the complete
constraints, which are P .x + 2 = Q .x and P .y + 3 = Q .y.

One of linogram’s main classes is Value, which represents the value of an
expression. Value is where the most interesting arithmetic takes place inside
of linogram. Values come in three kinds. Value::Constant represents a scalar
constant value such as 3. Value::Tuple represents a lone tuple, such as (2, 3),
or a sum of tuples. And Value::Feature represents a feature type, even a scalar
feature type, such as P or Q or P + (2, 3). Value itself is an abstract base
class, and doesn’t represent anything; it’s there only to provide methods that are
inherited by the other classes, primarily for doing arithmetic.

Value objects have one generic accessor, called kindof(), which returns
CONSTANT, TUPLE, or FEATURE, depending on what kind of object it is called on.
The other methods are arithmetic. The entry to these from the parser is via a
quartet of operation methods called add(), sub(), mul(), and div(), which are
just thin wrappers around the real workhorse, op():

sub add { $_[0]->op("add", $_[1]) }

sub sub { $_[0]->op("add", $_[1]->negate) }

sub mul { $_[0]->op("mul", $_[1]) }

sub div { $_[0]->op("mul", $_[1]->reciprocal) }

. linogram:               515

Note that subtraction and division are defined in terms of addition and
multiplication, which cuts down on the amount of work we need to do for
op().

op() itself is driven by a dispatch table because otherwise it would be quite
complicated. The dispatch table is indexed by the operation name (either add or
mul) and by the kinds of the two operands. It looks like this:

package Value; CODE LIBRARY
Value.pm

my %op = ("add" =>

{

"FEATURE,FEATURE" => 'add_features',

"FEATURE,CONSTANT" => 'add_feature_con',

"FEATURE,TUPLE" => 'add_feature_tuple',

"TUPLE,TUPLE" => 'add_tuples',

"TUPLE,CONSTANT" => undef,

"CONSTANT,CONSTANT" => 'add_constants',

NAME => "Addition",

},

"mul" =>

{

"FEATURE,CONSTANT" => 'mul_feature_con',

"TUPLE,CONSTANT" => 'mul_tuple_con',

"CONSTANT,CONSTANT" => 'mul_constants',

NAME => "Multiplication",

},

);

Addition, surprisingly, turns out to be more complicated than multiplica-
tion. This is because we’ve restricted our system to linear operations, which
means that multiplication is forbidden, except to multiply by constant values.
Given two Value objects and an operation tag, op() consults the dispatch table,
dispatches the appropriate arithmetic function, and returns the result:

sub op {

my ($self, $op, $operand) = @_;

my ($k1, $k2) = ($self->kindof, $operand->kindof);

my $method;

if ($method = $op{$op}{"$k1,$k2"}) {

$self->$method($operand);

} elsif ($method = $op{$op}{"$k2,$k1"}) {

516         Declarative Programming

$operand->$method($self);

} else {

my $name = $op{$op}{NAME} || "'$op'";

die "$name of '$k1' and '$k2' not defined";

}

}

The two operands are $self and $operand. op() starts by finding out what sorts
of values these are, using kindof, which returns CONSTANT for Value::Constant

objects, TUPLE for Value::Tuple objects, and so forth. It then looks in the dispatch
table under the operator name ("add" or "mul") and the value kinds. If it doesn’t
find anything, it tries the operands in the opposite order, since a function for
adding a tuple to a feature is the same as one for adding a feature to a tuple; this
cuts down on the number of functions we have to write. If neither operand order
works, then the op function fails with a message like "Addition of 'CONSTANT'

and 'TUPLE' not defined".
The only other generic methods in Value are for negate(), which is required

for subtraction, and reciprocal(), which is required for division. negate()

passes the buck to a general scaling method, which will be defined differently
in each of the various subclasses:

sub negate { $_[0]->scale(-1) }

reciprocal() is even simpler, because in general it’s illegal. You’re not allowed
to divide by a tuple (what would it mean?) or by a feature (since this would
mean that the equations were nonlinear; consider x = 1/y) so the default
reciprocal() method dies:

sub reciprocal { die "Nonlinear division" }

You are allowed to divide by a constant, so Value::Constant::reciprocal()

will override this definition.

        

Of the three kinds of Value, we’ll look at Value::Constant first, because it’s
by far the simplest. Value::Constant objects are essentially numbers. The
object is a hash with two members. One is the kind, which is CONSTANT; the
other is the numeric value. The constructor accepts a number and generates

. linogram:               517

a Value::Constant value with the number inside it:

package Value::Constant;

@Value::Constant::ISA = 'Value';

sub new {

my ($base, $con) = @_;

my $class = ref $base || $base;

bless { WHAT => $base->kindof,

VALUE => $con,

} => $class;

}

sub kindof { "CONSTANT" }

sub value { $_[0]{VALUE} }

To perform the scale() operation, we multiply the constant by the argument:

sub scale {

my ($self, $coeff) = @_;

$self->new($coeff * $self->value);

}

Division is defined for constants, so we must override the fatal reciprocal()
method with one that actually performs division. The reciprocal of a constant is
a new constant with the reciprocal value:

sub reciprocal {

my $self = shift;

my $v = $self->value;

if ($v == 0) {

die "Division by zero";

}

$self->new(1/$v);

}

Finally, the dispatch table contains two methods for operating on constants.
One adds two constants, and the other multiplies them:

sub add_constants {

my ($c1, $c2) = @_;

518         Declarative Programming

$c1->new($c1->value + $c2->value);

}

sub mul_constants {

my ($c1, $c2) = @_;

$c1->new($c1->value * $c2->value);

}

       

Tuples represent displacements. A tuple like (2, 3) represents a displacement of
2 units in the x direction (east) and 3 units in the y direction (south). As we’ll
see, linogram isn’t restricted to two-dimensional drawings, so (2, 3, 4) could
also be a legal displacement. Although it’s unlikely that any four-dimensional
beings will be using linogram, there’s no harm in making it as general as pos-
sible, so internally, a tuple is a hash. The keys are component names (x, y,
and so forth) and the values are the components. The tuple (2, 3) is repre-
sented by the hash { x => 2, y => 3 }. (2, 3, 4) is represented by the hash
{ x => 2, y => 3, z => 4 }. The tuple class itself doesn’t care what the com-
ponent names are, although this version of linogram will refuse to generate
tuples with any components other than x, y, and possibly z.

One possibly fine point is that tuple components need not be numbers;
they might be arbitrary Values. A tuple like (3, hspc) will have a y compo-
nent that is a Value::Feature. It’s even conceivable that we could have a tuple
whose components are other tuples. We’ll take some pains to forbid this last
possibility, since it doesn’t seem to have any meaning in the context of drawings.

Here is the constructor, which gets a component hash and returns a tuple
value object:

package Value::Tuple;

@Value::Tuple::ISA = 'Value';

sub kindof { "TUPLE" }

sub new {

my ($base, %tuple) = @_;

my $class = ref $base || $base;

bless { WHAT => $base->kindof,

TUPLE => \%tuple,

} => $class;

}

. linogram:               519

It has a few straightforward accessors:

sub components { keys %{$_[0]{TUPLE}} }

sub has_component { exists $_[0]{TUPLE}{$_[1]} }

sub component { $_[0]{TUPLE}{$_[1]} }

sub to_hash { $_[0]{TUPLE} }

To perform subtraction on tuples, we will need a scale() operation that
multiplies a tuple by a number. This is done componentwise; 2 * (2, 3) is
(4, 6):

sub scale {

my ($self, $coeff) = @_;

my %new_tuple;

for my $k ($self->components) {

$new_tuple{$k} = $self->component($k)->scale($coeff);

}

$self->new(%new_tuple);

}

Note that we must use $self->component($k)->scale($coeff) rather than
$self->component($k)->value * $coeff, because the component value might
not be a number.

Adding tuples will also be done componentwise. We want to make sure
that the user doesn’t try to add tuples with different components. It’s not clear
what (2, 3) + (2, 3, 4) would mean, for example. This function takes two
tuples and returns true if their component lists are identical:

sub has_same_components_as {

my ($t1, $t2) = @_;

my %t1c;

for my $c ($t1->components) {

return unless $t2->has_component($c);

$t1c{$c} = 1;

}

for my $c ($t2->components) {

return unless $t1c{$c};

}

return 1;

}

520         Declarative Programming

Adding two tuples is one of the functions from the dispatch table:

sub add_tuples {

my ($t1, $t2) = @_;

croak("Nonconformable tuples") unless $t1->has_same_components_as($t2);

my %result ;

for my $c ($t1->components) {

$result{$c} = $t1->component($c) + $t2->component($c);

}

$t1->new(%result);

}

The other dispatch table function that can return a tuple involves multiplying
a tuple by a constant. This is a simple application of scale():

sub mul_tuple_con {

my ($t, $c) = @_;

$t->scale($c->value);

}

         

The code for handling feature values isn’t much longer than the code for han-
dling tuples or constants, but it’s more complex, because arithmetic of features
is more complex. This is partly because it’s not really clear what it should mean
to add two boxes together.

What does it mean to add two boxes together? Suppose that A and B are
hlines, and that we have the constraint A = B, or, equivalently, A − B = 0,
which involves a subtraction of two hline features. What does this mean?

A contains several intrinsic constraints, including A.start.x + A.length =

A.end.x, and B similarly contains B.start.x + B.length = B.end.x. The end
value of A − B must contain both of these constraints. The subtraction won’t
affect them at all. We will need to carry along all the intrinsic constraints from
both input features into the result, but these intrinsic constraints don’t otherwise
participate in the arithmetic.

But the end value also must include some constraints that relate the two
inputs, such as A.end.y - B.end.y = 0, A.end.x - B.end.x = 0, and so on.
We’ll call these synthetic constraints, because they must be synthesized out of
information that we find in the input values.

. linogram:               521

A feature value has two parts, the intrinsic constraints and the synthetic
constraints. Each is a set of constraints. The intrinsic constraints are those
contributed by the definitions of the features themselves, and are internal to par-
ticular features. The synthetic constraints are those derived from the structure
of the expression and the interactions between the features in the expression.
The intrinsic constraints don’t participate in arithmetic, while the synthetic
constraints do participate in arithmetic.

When we want to add (or subtract) two boxes, we unite their two intrin-
sic constraint sets into a single set, which becomes the intrinsic constraint set
of the result. But to combine the two synthetic constraint sets, we perform
arithmetic on corresponding synthetic constraints. To keep track of which syn-
thetic constraints correspond, each one is labeled with a string. A synthetic
constraint that involves the start.x components of two hlines will be labeled
with the string start.x and will be combined with the start.x components of
any other lines involved in the expression. Synthetic constraint sets will therefore
be hashes.

               

Intrinsic constraint sets are represented by the class Intrinsic_Constraint_Set.
An intrinsic constraint set is a simple container class that holds a list of
Constraint objects:

package Intrinsic_Constraint_Set;

sub new {

my ($base, @constraints) = @_;

my $class = ref $base || $base;

bless \@constraints => $class;

}

sub constraints { @{$_[0]} }

It has only a few methods. One is a map-like function for invoking a callback
on each constraint in the set, and returning the set of the results:

sub apply {

my ($self, $func) = @_;

my @c = map $func->($_), $self->constraints;

$self->new(@c);

}

522         Declarative Programming

This is used by qualify(), which qualifies all the constraints in the set:

sub qualify {

my ($self, $prefix) = @_;

$self->apply(sub { $_[0]->qualify($prefix) });

}

Last is union(), which takes one or more intrinsic constraint sets and generates
a new set that contains all the constraints in the input sets:

sub union {

my ($self, @more) = @_;

$self->new($self->constraints, map {$_->constraints} @more);

}

           

Synthetic_Constraint_Set is more interesting, because it supports arithmetic
rather than mere aggregation. As mentioned earlier, a synthetic constraint set
is represented by a hash, because each constraint in the set has a label that is
used to determine which constraints in other sets it will fraternize with. For con-
venience, the constructor accepts either a regular hash or a reference to a hash:

package Synthetic_Constraint_Set;

sub new {

my $base = shift;

my $class = ref $base || $base;

my $constraints;

if (@_ == 1) {

$constraints = shift;

} elsif (@_ % 2 == 0) {

my %constraints = @_;

$constraints = \%constraints;

} else {

my $n = @_;

require Carp;

Carp::croak("$n arguments to Synthetic_Constraint_Set::new");

}

bless $constraints => $class;

}

. linogram:               523

It has the usual accessors:

sub constraints { values %{$_[0]} }

sub constraint { $_[0]->{$_[1]} }

sub labels { keys %{$_[0]} }

sub has_label { exists $_[0]->{$_[1]} }

Also a method for appending another constraint to the set:

sub add_labeled_constraint {

my ($self, $label, $constraint) = @_;

$self->{$label} = $constraint;

}

It has another map-like function that applies a callback to each constraint and
returns a new set with the results. This method leaves the labels unchanged:

sub apply {

my ($self, $func) = @_;

my %result;

for my $k ($self->labels) {

$result{$k} = $func->($self->constraint($k));

}

$self->new(\%result);

}

This function seems to be a good target for currying, but I decided to postpone
that change.

Like Intrinsic_Constraint_Set, Synthetic_Constraint_Set also has a
method for qualifying all of its constraints:

sub qualify {

my ($self, $prefix) = @_;

$self->apply(sub { $_[0]->qualify($prefix) });

}

Unlike Intrinsic_Constraint_Set, whose constraints are not involved in arith-
metic, Synthetic_Constraint_Set has a method for scaling all of its constraints:

sub scale {

my ($self, $coeff) = @_;

524         Declarative Programming

$self->apply(sub { $_[0]->scale_equation($coeff) });

}

Yet another map-like function takes two synthetic constraint sets and applies
the callback function to pairs of corresponding constraints, building a new set
of the results:

sub apply2 {

my ($self, $arg, $func) = @_;

my %result;

for my $k ($self->labels) {

next unless $arg->has_label($k);

$result{$k} = $func->($self->constraint($k),

$arg->constraint($k));

}

$self->new(\%result);

}

This function will be used for addition of features. apply2() will be called to
add the matching constraints from the sets of its two operands.

This brings up a fine point: What if the labels in the two sets don’t match?
For example, what if we have:

line L;

hline H;

L + H = ... ;

Here H will have synthetic constraints:

center.x ⇒ H.center.x = 0

center.y ⇒ H.center.y = 0

end.x ⇒ H.end.x = 0

end.y ⇒ H.end.y = 0

length ⇒ H.length = 0

start.x ⇒ H.start.x = 0

start.y ⇒ H.start.y = 0

y ⇒ H.y = 0

. linogram:               525

but L will be missing a few of these, and will have only:

center.x ⇒ L.center.x = 0

center.y ⇒ L.center.y = 0

end.x ⇒ L.end.x = 0

end.y ⇒ L.end.y = 0

start.x ⇒ L.start.x = 0

start.y ⇒ L.start.y = 0

What happens to H’s length and y constraints? The right thing to do here is to
discard them. The result set is:

center.x ⇒ L.center.x + H.center.x = 0

center.y ⇒ L.center.y + H.center.y = 0

end.x ⇒ L.end.x + H.end.x = 0

end.y ⇒ L.end.y + H.end.y = 0

start.x ⇒ L.start.x + H.start.x = 0

start.y ⇒ L.start.y + H.start.y = 0

Thus, the result of adding an hline and a line is just a line. Similarly if we
try to equate an hline and a vline, the resulting expression contains synthetic
constraints only for the parts they have in common. The horizontalness and
verticalosity are handled by the intrinsic constraint sets instead. There should
probably be a check to make sure that the two operands in an addition are of
compatible types, but that’s something for the next version. In the meantime,
the code in apply2() silently discards constraints with labels present in one but
not both argument sets.

The final method in Synthetic_Constraint_Set is a special one for handling
arithmetic involving features and tuples. Adding a feature to a tuple is interesting.
The trick here is that the tuple’s x component must be added to all the synthetic
constraints that represent x coordinates, and similarly for the y component.
(And similarly also the z component in a three-dimensional drawing.) Suppose
we had:

hline H;

H + (3, 4) = ...

526         Declarative Programming

The synthetic constraint set for H is:

center.x ⇒ H.center.x = 0

center.y ⇒ H.center.y = 0

end.x ⇒ H.end.x = 0

end.y ⇒ H.end.y = 0

length ⇒ H.length = 0

start.x ⇒ H.start.x = 0

start.y ⇒ H.start.y = 0

y ⇒ H.y = 0

The synthetic constraint set of the sum is:

center.x ⇒ H.center.x + 3 = 0

center.y ⇒ H.center.y + 4 = 0

end.x ⇒ H.end.x + 3 = 0

end.y ⇒ H.end.y + 4 = 0

length ⇒ H.length = 0

start.x ⇒ H.start.x + 3 = 0

start.y ⇒ H.start.y + 4 = 0

y ⇒ H.y + 4 = 0

How do we decide whether a synthetic constraint represents an x or a y
coordinate? linogram assumes that any feature named x is an x coordinate,
and that any feature named y is a y coordinate. The tuple’s x component
should be combined with any synthetic constraint whose label ends in .x

or is plain x. This selective combination is handled by yet another map-like
function, apply_hash():

sub apply_hash {

my ($self, $hash, $func) = @_;

my %result;

for my $c (keys %$hash) {

my $dotc = ".$c";

. linogram:               527

for my $k ($self->labels) {

next unless $k eq $c || substr($k, -length($dotc)) eq $dotc;

$result{$k} = $func->($self->constraint($k), $hash->{$c});

}

}

$self->new(\%result);

}

Each component of the argument hash has a label, $c. The function scans the
labels of the constraints in the set, which are indexed by $k. If the constraint label
matches the tuple component label, the callback is invoked and its return value
is added to the result set. The labels match if they are equal (as with x and x) or if
the constraint label ends with a dot followed by the tuple label (as with start.x

and x.) The dot is important, because we don’t want a label like max or box to
match x.

     -      

Now we can see the methods for operating on feature-value objects. The objects
themselves contain nothing more than an intrinsic and a synthetic constraint
set:

package Value::Feature;

@Value::Feature::ISA = 'Value';

sub kindof { "FEATURE" }

sub new {

my ($base, $intrinsic, $synthetic) = @_;

my $class = ref $base || $base;

my $self = {WHAT => $base->kindof,

SYNTHETIC => $synthetic,

INTRINSIC => $intrinsic,

};

bless $self => $class;

}

There’s another very important constructor in the Value::Feature class. Instead
of building a value from given sets of constraints, it takes a Type object, which
represents a type such as box or line, figures out what its constraint sets

528         Declarative Programming

should be, and builds a new value with those constraint sets:

sub new_from_var {

my ($base, $name, $type) = @_;

my $class = ref $base || $base;

$base->new($type->qualified_intrinsic_constraints($name),

$type->qualified_synthetic_constraints($name),

);

}

Value::Feature naturally has two accessors, one for the intrinsic and one for
the synthetic constraint sets:

sub intrinsic { $_[0]->{INTRINSIC} }

sub synthetic { $_[0]->{SYNTHETIC} }

For its scaling operation, it passes the buck to the synthetic constraint set. The
intrinsic constraints don’t participate in arithmetic, so they remain the same:

sub scale {

my ($self, $coeff) = @_;

return

$self->new($self->intrinsic,

$self->synthetic->scale($coeff),

);

}

The four other methods are the ones from the dispatch table. To add two
features, we unite their intrinsic constraint sets, and add corresponding con-
straints from their synthetic constraint sets:

sub add_features {

my ($o1, $o2) = @_;

my $intrinsic = $o1->intrinsic->union($o2->intrinsic);

my $synthetic = $o1->synthetic->apply2($o2->synthetic,

sub { $_[0]->add_equations($_[1]) },

);

$o1->new($intrinsic, $synthetic);

}

Adding constraints is performed by add_equations(), which is inherited from
Equation.

. linogram:               529

As with tuples, multiplying a feature by a constant is trivial, since it’s the
same as scale():

sub mul_feature_con {

my ($o, $c) = @_;

$o->scale($c->value);

}

Adding a feature to a constant isn’t hard, once we decide what it should mean.
The current version of linogram adds the constant to each synthetic constraint.
This happens to be correct for features that represent numbers, since, as we’ll see,
they have a single synthetic constraint with label "". But it doesn’t make much
sense for most other features. Probably this function should contain a type check
to make sure that its feature argument represents a scalar, but that isn’t present
in this version:

sub add_feature_con {

my ($o, $c) = @_;

my $v = $c->value;

my $synthetic = $o->synthetic->apply(sub { $_[0]->add_constant($v) });

$o->new($o->intrinsic, $synthetic);

}

Once again, the intrinsic constraints don’t participate in arithmetic, so they’re
unchanged.

The final method is for adding a feature to a tuple. We use the apply_hash()
function that was specifically intended for adding features to tuples. Its call-
back argument is complicated by the fact that tuple components might not
be simple numbers. If the component is a simple number (a Value::Constant

object), then we use the add_constant() method as in the previous
function:

sub add_feature_tuple {

my ($o, $t) = @_;

my $synthetic =

$o->synthetic->apply_hash($t->to_hash,

sub {

my ($constr, $comp) = @_;

my $kind = $comp->kindof;

if ($kind eq "CONSTANT") {

$constr->add_constant($comp->value);

530         Declarative Programming

If the tuple component is a feature, we assume that it’s a scalar, which has only
a single constraint, with label "":

} elsif ($kind eq "FEATURE") {

$constr->add_equations($comp->synthetic->constraint(" "));

If the tuple component is another tuple, we croak, because that’s not allowed.
This freak tuple should have been forbidden earlier, but there’s little harm in
adding more than one check for the same thing:

} elsif ($kind eq "TUPLE") {

die "Tuple with subtuple component";

} else {

die "Unknown tuple component type '$kind'";

}

},

);

$o->new($o->intrinsic, $synthetic);

}

1;

Once again, the intrinsic constraints are unchanged because they don’t partici-
pate in arithmetic.

9.4.3 Feature Types

Where do the constraints come from? If the equation solver is the heart of
linogram, then its liver is the parser, which parses the input specification, includ-
ing the constraint equations. The result of parsing is a hierarchy of feature types
such as box and line. These are Perl objects from the class Type. Each type
of feature is represented by a Type object, which records the sub-features, the
constraints, and the other properties of that kind of feature object.

To construct a new type, we call Type::new:

package Type;CODE LIBRARY
Type.pm

sub new {

my ($old, $name, $parent) = @_;

my $class = ref $old || $old;

. linogram:               531

my $self = {N => $name, P => $parent, C => [],

O => {}, D => [],

};

bless $self => $class;

}

$name is the name of the new type. $parent is optional, and, if present, is a Type

object representing the type from which the new type is extended. For example,
the parent of vline is line; the parent of line is undefined. The parent type is
stored under member P for "parent"; the name is stored under N.

The other members of the Type object are:

• C: The constraints defined for the object.

• O: The sub-features of the type. This is a hash. The keys are the names of
the sub-features, and the values are the Type objects representing the types
of the sub-features.

• D: A list of “drawables,” either Perl code references or sub-feature names.

          

Type has a subclass, Type::Scalar, which represents trivial types, such as number,
that have no constraints and no sub-features. linogram has no scalar types other
than number, but a future version might introduce some.

Sometimes these types behave a little differently from compound types such
as points and boxes, so it’s convenient to put their methods into a separate class.
One principal difference is the trivial is_scalar method, which returns true for
a scalar type object and false for a nonscalar object. Type::Scalar also overrides
the methods that are used to install constraints and sub-features into type objects:

package Type::Scalar;

@Type::Scalar::ISA = 'Type';

sub is_scalar { 1 }

sub add_constraint {

die "Added constraint to scalar type";

}

sub add_subfeature {

die "Added subfeature to scalar type";

}

532         Declarative Programming

We should never be extending scalar types like number with sub-features or
constraints, so overriding these methods provides us with early warning if
something is going terribly wrong.

T y p e  

The simplest Typemethod says that types are not scalars, except when the method
is overridden by the Type::Scalar version of the method:

package Type;

sub is_scalar { 0 }

Many of the accessor methods on Type objects are straightforward; for example:

sub parent { $_[0]{P} }

But in some cases, an accessor needs to be referred up the derivation chain to
the parent type. For example, a vline has a sub-feature named start, but it’s
not stored in the type object for vline; it’s inherited from line. So if we want
find out about the type of the start sub-feature of vline, we must search in
line. Moreover, a vline has a sub-feature named start.x, which is the x sub-
feature of the start sub-feature. The subfeature method handles all of these
situations:

sub subfeature {

my ($self, $name, $nocroak) = @_;

return $self unless defined $name;

my ($basename, $suffix) = split /\./, $name, 2;

if (exists $self->{O}{$basename}) {

return $self->{O}{$basename}->subfeature($suffix);

} elsif (my $parent = $self->parent) {

$parent->subfeature($name);

} elsif ($nocroak) {

return;

} else {

Carp::croak("Asked for nonexistent subfeature '$name' of type '$self->{N}'");

}

}

. linogram:               533

$type->subfeature($name) returns the type of the sub-feature of $type with
name $name. If $name is a compound name, which contains a dot, it is split
into a $basename (the component before the first dot) and a $suffix (everything
after the first dot); the $basename is looked up directly, and the $suffix is
referred to a recursive call to subfeature. If the specified type does not contain
a sub-feature with the appropriate basename, then its parent object is consulted
instead. If there is no parent type, then the requested sub-feature doesn’t exist,
and the function croaks. This is because the error is most likely to be caused by
an incorrect specification in the drawing, asking for a nonexistent sub-feature.
To disable the croaking behavior, the user of the function can pass the optional
third parameter, which makes the function return false instead. An example of
this is the simple has_subfeature method, which returns true if the target has
a sub-feature of the specified name, and false if not:

sub has_subfeature

{

my ($self, $name) = @_;

defined($self->subfeature($name, "don’t croak"));

}

The recursion in subfeature() is in two different directions. Sometimes we
recurse from a feature to one of its sub-features, and sometimes we recurse up the
type inheritance tree to the parent type. Suppose $box, $hline, $line, $point,
and $number are the Type objects that represent the indicated types. Let’s see
how the call $box->subfeature("top.start.x") is resolved:

$box->subfeature("top.start.x")

$box has a sub-feature called "top", which is an hline, so the call is referred to
the sub-feature type:

$hline->subfeature("start.x");

$hline has no sub-feature called "start", so the call is referred to the parent type:

$line->subfeature("start.x");

$line does have a sub-feature called "start", which is a point, so the call is
referred to the sub-feature type:

$point->subfeature("x");

534         Declarative Programming

$point does have a sub-feature called "x", which is a number, so the call is
referred to the sub-feature type:

$number->subfeature(undef);

The call reaches the base case and returns $number, which is indeed the type of
the top.start.x feature of box.

A similar process occurs in the Type::constraints method, which delivers
an array of all the constraints of a type, including those implied by the sub-
features and the parent type:

sub constraints {

my $self = shift;

First the function obtains the constraints inherent in the type itself:

my @constraints = @{$self->{C}};

Then it obtains the constraints that are inherited from the parent type, and, via
recursion, from all the ancestor types:

my $p = $self->parent;

if (defined $p) { push @constraints, @{$p->constraints} }

Then it obtains the constraints that it gets from its sub-features, including any
constraints that they inherit from their ancestor types:

while (my ($name, $type) = each %{$self->{O}}) {

my @subconstraints = @{$type->constraints};

push @constraints, map $_->qualify($name), @subconstraints;

}

\@constraints;

}

constraint_set() is the same, except that it returns a Constraint_Set object
instead of a raw array reference:

sub constraint_set {

my $self = shift;

Constraint_Set->new(@{$self->constraints});

}

. linogram:               535

(hline)

endcenter start ylength

yx yx yx

 . The subfeatures of a feature form a tree structure.

These constraints are precisely the intrinsic constraints that are used by
Value::Feature objects, so we have:

sub intrinsic_constraints {

my $constraints = $_[0]->constraints;

Intrinsic_Constraint_Set->new(@$constraints);

}

The new_from_type method of Value::Feature actually wants the qualified
intrinsic constraints:

sub qualified_intrinsic_constraints {

$_[0]->intrinsic_constraints->qualify($_[1]);

}

As usual, the synthetic constraints for a type are rather more interesting. In
the absence of any other information, an expression like P is interpreted as the
constraint P = 0. Later, the P = 0 might be combined with a Q = 0 to
produce P + Q = 0 or P − Q = 0, and we’ll see that we can treat P = Q as
if it were P − Q = 0. So figuring out the synthetic constraints for a type like
point involves locating all the scalar type subfeatures of point, and then setting
each one to 0.

The recursive auxiliary method all_leaf_subfeatures() recovers the
names of all the scalar sub-features of the given type (see Figure 9.5). Its name
refers to the fact that the sub-feature relation makes each type into a tree. The
scalar sub-features are the leaves of the tree.

sub all_leaf_subfeatures {

my $self = shift;

my @all;

my %base = $self->subfeatures;

while (my ($name, $type) = each %base) {

536         Declarative Programming

push @all, map {$_ eq "" ? $name : "$name.$_"}

$type->all_leaf_subfeatures;

}

@all;

}

The function starts by getting all the direct sub-features. These include those
defined directly by the target type and also those defined by its ancestor types.
Some of these sub-features might be compound features and have sub-features
of their own, and some might be leaves. The function loops over them to do
the recursion on each one. It qualifies the names appropriately and adds the
information to the result array. The special case in the map is to avoid extra
periods from appearing at the end of the key names in some cases.

To build the synthetic constraint set for a particular type, we locate all the
scalar sub-features and make a constraint for each one. If name is the name of
a scalar subfeature, we introduce the synthetic constraint that has name = 0
with label name:

sub synthetic_constraints {

my @subfeatures = $_[0]->all_leaf_subfeatures;

Synthetic_Constraint_Set->new(map {$_ => Constraint->new($_ => 1)}

@subfeatures

);

}

sub qualified_synthetic_constraints {

$_[0]->synthetic_constraints->qualify($_[1]);

}

All but one of the remaining Type methods are accessors, most of them fairly
simple:

sub add_drawable {

my ($self, $drawable) = @_;

push @{$self->{D}}, $drawable;

}

subfeatures() returns all the direct sub-features of a type, but not the sub-sub-
features. For box, it will return top and nw, but not top.center or nw.y:

sub subfeatures {

my $self = shift;

. linogram:               537

my %all;

while ($self) {

%all = (%{$self->{O}}, %all);

$self = $self->parent;

}

%all;

}

The function that retrieves the list of drawable sub-features and drawing func-
tions for a type recurses up the type inheritance tree using subfeatures().
It doesn’t need to recurse into the sub-features, because the drawing method
will do that itself. We’ll see the drawing method later; here’s the drawables()

method, which returns a list of the drawables:

sub drawables {

my ($self) = @_;

return @{$self->{D}} if $self->{D} && @{$self->{D}};

if (my $p = $self->parent) {

my @drawables = $p->drawables;

return @drawables if @drawables;

}

my %subfeature = $self->subfeatures;

my @drawables = grep ! $subfeature{$_}->is_scalar, keys %subfeature;

@drawables;

}

If the type definition contains an explicit drawable list, the method returns it.
If not, it uses the drawable list of its parent object, if it has one. If the type has
no parent type, the method generates and returns the default, which is a list of
all the sub-features that aren’t scalars. There’s no point returning scalars, since
they’re not drawable, so they’re filtered out.

New sub-features are installed into a type with add_subfeature(). Its
arguments are a name and a sub-feature type:

sub add_subfeature {

my ($self, $name, $type) = @_;

$self->{O}{$name} = $type;

}

Similarly, new constraints are installed into a type with add_constraints().
Its arguments are Value::Feature objects. The method extracts the constraints

538         Declarative Programming

from the values and inserts them into the Type object:

sub add_constraints {

my ($self, @values) = @_;

for my $value (@values) {

next unless $value->kindof eq 'FEATURE';

push @{$self->{C}},

$value->intrinsic->constraints,

$value->synthetic->constraints;

}

}

I’ve left the most important Type method for the end. It’s the most important
method in the entire program, because it’s the method that actually draws the
picture. Its primary argument is a Type object. When invoked for the root type,
it draws the entire picture. It’s a little longer than the other methods, so we’ll see
it a bit at a time:

sub draw {

my ($self, $env) = @_;

The primary argument, $self, is the type to draw. The other argument is an
environment, which belongs to an Environment class we didn’t see. The environ-
ment is nothing more than a hash with the names and values of the solutions of
the constraints.1 The initial call to draw(), which draws the root feature, omits
the environment, because the equations haven’t been solved yet; the missing
$env parameter triggers draw() to solve the equations:

unless ($env) {

my $equations = $self->constraint_set;

my %solutions = $equations->values;

$env = Environment->new(%solutions);

}

The rest of the function does the actual drawing. It scans the list of drawables
for the feature being drawn. If the drawable is a reference to an actual drawing

1 In an earlier version of this program, the environment parameter was more interesting. Features
could contain local variables that didn’t participate in the constraint solving (and which therefore
didn’t have to be linear) and parameters passed in from the containing feature. In the interests of
clear exposition, I trimmed these features out.

. linogram:               539

function, the function is invoked, and is passed the environment:

for my $name ($self->drawables) {

if (ref $name) { # actually a coderef, not a name

$name->($env);

Otherwise, the drawable is the name of a sub-feature on which the draw()method
is recursively called. The function recovers the type of the sub-feature. It also
uses the Environment::subset() method to construct a new environment that
contains only the variables relevant to that sub-feature:

} else {

my $type = $self->subfeature($name);

my $subenv = $env->subset($name);

$type->draw($subenv);

}

}

}

1;

For completeness, here is Environment::subset():

package Environment; CODE LIBRARY
Environment.pmsub subset {

my ($self, $name) = @_;

my %result;

for my $k (keys %$self) {

my $kk = $k;

if ($kk =˜ s/ˆ\Q$name.//) {

$result{$kk} = $self->{$k};

}

}

$self->new(%result);

}

9.4.4 The Parser

We’re now ready to see the core of linogram, which is the parser that parses
drawing specifications. First, the lexer, which is straightforward:

use Parser ':all'; CODE LIBRARY
linogram.pluse Lexer ':all';

540         Declarative Programming

my $input = sub { read INPUT, my($buf), 8192 or return; $buf };

my @keywords = map [uc($_), qr/\b$_\b/],

qw(constraints define extends draw);

my $tokens = iterator_to_stream(

make_lexer($input,

@keywords,

['ENDMARKER', qr/__END__.*/s,

sub {

my $s = shift;

$s =˜ s/ˆ__END__\s*//;

['ENDMARKER', $s]

}],

['IDENTIFIER', qr/[a-zA-Z_]\w*/],

['NUMBER', qr/(?: \d+ (?: \.\d*)?

| \.\d+)

(?: [eE] \d+)? /x],

['FUNCTION', qr/&/],

['DOT', qr/\./],

['COMMA', qr/,/],

['OP', qr|[-+*/]|],

['EQUALS', qr/=/],

['LPAREN', qr/[(]/],

['RPAREN', qr/[)]/],

['LBRACE', qr/[{]/],

['RBRACE', qr/[}]\n*/],

['TERMINATOR', qr/;\n*/],

['WHITESPACE', qr/\s+/, sub { "" }],

));

Only a few of these need comment. IDENTIFIER is a simple variable name, such
as box or start. Compound names like start.x will be assembled later, by the
parser.

ENDMARKER consists of the sequence __END__ and all the following text up
to the end of the file. The lexer preprocesses this to delete the __END__ itself,
leaving only the following text.

Several similar definitions for the CONSTRAINTS, DEFINE, EXTENDS, and DRAW

tokens are generated programmatically, and are inserted at the beginning of the
lexer definition via the @keywords array.

Whitespace, as in earlier parsers, is discarded.

. linogram:               541

             

The parser module used in linogram is based on our functional parser library of
Chapter 8, with some additions. Suppose that $A and $B are parsers. Recall the
following features supplied by the parser of Chapter 8:

• empty() is a parser that consumes no tokens and always succeeds.

• $A - $B ("A, then B") is a parser that matches whatever $A matches, con-
suming the appropriate tokens, and then applies $B to the remaining input,
possibly consuming more tokens. It succeeds only if both $A and $B succeed
in sequence.

• $A | $B ("A or B") is a parser that tries to apply $A to its input, and, if that
doesn’t work, tries $B instead. It succeeds if either of $A or $B succeeds.

• star($A) matches zero or more occurrences of whatever $A matches; it is
equivalent to empty() | $A - star($A).

• _(...) is a synonym for lookfor([...]), which builds a parser that looks
for a single token of the indicated kind. If the next token is of the correct
kind, it is consumed and the parser succeeds; otherwise the parser fails.

• $A >> $coderef is a synonym for T($A, $coderef), a parser that applies $A
to its input stream, and then uses $coderef to transform the result returned
by $A into a different form. It assumes that $A is a concatenation of other
parsers.

To these operations, we’ll add a few extras:

• option($item) indicates that the syntax matched by the $item parser is
optional. It builds a parser equivalent to:

$item | empty()

• labeledblock($label, $contents) is for matching labeled blocks like:

draw {

...

}

and:

define line {

...

}

542         Declarative Programming

It’s equivalent to:

$label - _('LBRACE') - star($contents) -_('RBRACE')

>> sub { [$_[0], @{$_[2]}] }

• commalist($item, $separator) is for matching comma-separated lists of
items. The $separator defaults to _('COMMA'). It is otherwise equivalent to:

$item - star($separator - $item >> sub { $_[1] })

- option($separator)

>> sub { [$_[0], @{$_[1]}] }

The first sub throws away the values associated with the separators, leaving
only the values of the items. The second sub accumulates all the item values
into a single array, which is the value returned by the commalist parser.

• $parser > $coderef is like $parser >> $coderef, except that it doesn’t
assume that $parser is a concatenation. Instead of assuming that the value
returned by $parser is an array reference, and passing the elements of the
array to the coderef, it passes the value returned by $parser directly to
$coderef as a single argument.

• $parser / $condition is like $parser, with a side condition on the result.
It runs $parser as usual, and then passes the resulting value to the coderef in
$condition. If the condition returns true, the parser succeeds, and the final
result is the same value originally returned by $parser. If the coderef returns
false, the parser fails.

% T Y P E S

The main data structure in linogram is %TYPES, which is a hash that maps known
type names to the Type objects that represent them. When the program starts,
%TYPES is initialized with two predefined types:

my $ROOT_TYPE = Type->new('ROOT');

my %TYPES = ('number' => Type::Scalar->new('number'),

'ROOT' => $ROOT_TYPE,

);

Initially, linogram knows about the type number, which is a trivial type with no
sub-features and no constraints, and the type ROOT, which represents the entire
diagram.

. linogram:               543

  

A program in linogram is a series of subtype definitions and feature and con-
straint declarations which together define the root type. As subtype definitions
are encountered, the corresponding Type objects are manufactured and installed
in %TYPES. As feature and constraint declarations are encountered, they are
installed into the root type object.

The top-level parser looks like this:

$program = star($Definition

| $Declaration

> sub { add_declarations($ROOT_TYPE, $_[0]) }

)

- option($Perl_code) - $End_of_Input

>> sub {

$ROOT_TYPE->draw();

};

The $definition parser will take care of manufacturing new type objects and
installing them into %TYPES. When a declaration is parsed, add_declarations()
will install it into the root type object $ROOT_TYPE. The program may be followed
with an optional section of plain Perl code, which is a convenient place to stick
auxiliary functions like draw_line. When the parser finishes parsing the entire
specification, it invokes the draw method on the root type object, drawing the
entire diagram.

$perl_code is an optional section at the end of the drawing specification.
It’s an arbitrary segment of Perl code, separated from the rest of the specification
with the endmarker __END__:

$perl_code = _("ENDMARKER") > sub { eval $_[0];

die if $@;

};

The lexer has already trimmed off the endmarker itself. The Perl code is then
passed to eval, which compiles the Perl code and installs it into the program.

        

$definition is a parser for a block of the form:

define point { ... }

544         Declarative Programming

or:

define hline extends line { ... }

We use the labeledblock function to construct this parser:

$definition = labeledblock($Defheader, $Declaration)

>> sub { ... } ;

$declaration is the parser for a declaration, which will see shortly. $defheader
is the part of the definition block before the curly braces:

$defheader = _("DEFINE") - _("IDENTIFIER") - $Extends

>> sub { ["DEFINITION", @_[1,2]]};

$extends = option(_("EXTENDS") - _("IDENTIFIER") >> sub { $_[1] }) ;

The value from the $definition parser is passed to a postprocessing function
that is responsible for constructing a new Type object and installing it into
%TYPES; the code is all straightforward. For a definition that begins define hline

extends line, $name is hline and $extends is $line:

$definition = labeledblock($defheader, $Declaration)

>> sub {

my ($defheader, @declarations) = @_;

my ($name, $extends) = @$defheader[1,2];

my $parent_type = (defined $extends) ? $TYPES{$extends} : undef;

my $new_type;

if (exists $TYPES{$name}) {

lino_error("Type '$name' redefined");

}

if (defined $extends && ! defined $parent_type) {

lino_error("Type '$name' extended from unknown type '$extends'");

}

$new_type = Type->new($name, $parent_type);

add_declarations($new_type, @declarations);

$TYPES{$name} = $new_type;

};

. linogram:               545

        

A declaration takes one of three forms. One is the declaration of one or more
sub-features:

hline top, bottom;

Two others are constraints and draw sections:

constraints { ... }

draw { ... }

Here’s the declaration parser:

$declaration = $Type - commalist($Declarator) - _("TERMINATOR")

>> sub { ... }

| $Constraint_section

| $Draw_section

;

A $type is the same as an identifier, with the side condition that it must be
mentioned in the %TYPES hash:

$type = lookfor("IDENTIFIER",

sub {

exists($TYPES{$_[0][1]}) || lino_error("Unrecognized type '$_[0][1]'");

$_[0][1];

}

);

A declaration might declare more than one variable, as with:

hline top, bottom;

Each of the sub-parts of the declaration is called a declarator; the preceding
declaration has two declarators. In its simplest form, a declarator is nothing
more than a variable name:

$declarator = _("IDENTIFIER")

- option(_("LPAREN") - commalist($Param_Spec) - _("RPAREN")

>> sub { $_[1] }

)

546         Declarative Programming

>> sub {

{ WHAT => 'DECLARATOR',

NAME => $_[0],

PARAM_SPECS => $_[1],

};

};

The optional section in the middle is for a parenthesis-delimited list of
“parameter specifications.” A declarator might look like this:

... F(ht=3, wd=boxwid), ...

which is equivalent to:

... F, ...

F.ht = 3;

F.wd = boxwid;

The sub { $_[1] } discards the parentheses; the parameter specifications are
packaged into the resulting value under the key PARAM_SPECS. The format of
a parameter specification is simple:

$param_spec = _("IDENTIFIER") - _("EQUALS") - $Expression

>> sub {

{ WHAT => "PARAM_SPEC",

NAME => $_[0],

VALUE => $_[2],

}

}

;

Thus the value manufactured for the declarator F(ht=3, wd=boxwid) looks
like this:

{ WHAT => 'DECLARATOR',

NAME => 'F',

PARAM_SPECS =>

[{ WHAT => 'PARAM_SPEC',

NAME => 'ht',

VALUE => (expression representing constant 3),

},

. linogram:               547

{ WHAT => 'PARAM_SPEC',

NAME => 'wd',

VALUE => (expression representing variable 'boxwid'),

},

]

}

We haven’t yet seen the representation for expressions.
The $declaration parser gets a type name and a list of declarators and

manufactures a declaration value; later on, the add_declarations() function
will install this declaration into the appropriate Type object. The declaration
value is manufactured as follows:

$declaration = $Type - commalist($Declarator) - _("TERMINATOR")

>> sub { my ($type, $decl_list) = @_;

unless (exists $TYPES{$type}) {

lino_error("Unknown type name '$type' in declaration '@_'\n");

}

for (@$decl_list) {

$_->{TYPE} = $type;

check_declarator($TYPES{$type}, $_);

}

{WHAT => 'DECLARATION',

DECLARATORS => $decl_list };

}

....

| $Constraint_section

| $Draw_section

;

The construction function checks to make sure the type used in the declaration
actually exists. It then installs the type into each declarator value, transforming:

{ WHAT => 'DECLARATOR',

NAME => 'F',

PARAM_SPECS => [...],

}

548         Declarative Programming

into:

{ WHAT => 'DECLARATOR',

NAME => 'F',

PARAM_SPECS => [...],

TYPE => $type,

}

Each declarator is also checked to make sure the names in its parameter speci-
fications are actually the names of sub-features of its type. box F(ht=3) passes
the check, but box F(age=34) fails, because boxes don’t have ages. This check is
performed by check_declarator():

sub check_declarator {

my ($type, $declarator) = @_;

for my $pspec (@{$declarator->{PARAM_SPECS}}) {

my $name = $pspec->{NAME};

unless ($type->has_subfeature($name)) {

lino_error("Declaration of '$declarator->{NAME}' "

. "specifies unknown subfeature '$name' "

. "for type '$type->{N}'\n");

}

}

}

Declarator values are combined into declaration values; a typical decla-
ration value, for the declaration box C, F(ht=3, wd=boxwid);, looks like
this:

{ WHAT => 'DECLARATION',

DECLARATORS =>

[{ WHAT => 'DECLARATOR',

NAME => 'C',

PARAM_SPECS => [],

TYPE => 'box',

},

{ WHAT => 'DECLARATOR',

NAME => 'F',

PARAM_SPECS =>

[{ WHAT => 'PARAM_SPEC',

NAME => 'ht',

. linogram:               549

VALUE => (expression representing constant 3),

},

{ WHAT => 'PARAM_SPEC',

NAME => 'wd',

VALUE => (expression representing variable 'boxwid')

},

]

TYPE => 'box',

},

]

}

The other two kinds of declarations we’ve seen before have been constraint
and draw sections, which have their own productions in the grammar:

$declaration = ...

| $Constraint_section

| $Draw_section

;

The overall structure of a constraint section is a block, labeled with the word
constraints:

$constraint_section = labeledblock(_("CONSTRAINTS"), $Constraint)

>> sub { shift;

{ WHAT => 'CONSTRAINTS', CONSTRAINTS => [@_] }

};

A constraint is simply an equation, which is a pair of expressions with an equal
sign between them:

$constraint = $Expression - _("EQUALS") - $Expression - _("TERMINATOR")

>> sub { Expression->new('-', $_[0], $_[2]) } ;

The value of the constraint is not actually a Constraint object, but rather an
Expression object. Since the constraint A = B is semantically equivalent to
A − B = 0, we compile it into an expression that represents A - B and leave it
at that. The finished value for a constraint section, say for:

constraints { start.x = end.x;

start.x = x;

start.y + height = end.y;

}

550         Declarative Programming

is the hash:

{ WHAT => 'CONSTRAINTS',

CONSTRAINTS =>

[(expression representing start.x - end.x),

(expression representing start.x - x),

(expression representing start.y + height - end.y),

]

}

The third sort of declaration is a draw section, which might look like this:

draw { &draw_line; }

or like this:

draw { top; bottom; left; right; }

Once again, it is a labeled block, very similar to the definition of the constraint
section:

$draw_section = labeledblock(_("DRAW"), $Drawable)

>> sub { shift; { WHAT => 'DRAWABLES', DRAWABLES => [@_] } };

Since there are two possible formats for a drawable, however, the definition of
$drawable is a little more complicated than the definition of $constraint:

$drawable = $Name - _("TERMINATOR")

>> sub { { WHAT => 'NAMED_DRAWABLE',

NAME => $_[1],

}

}

| _("FUNCTION") - _("IDENTIFIER") - _("TERMINATOR")

>> sub { my $ref = \&{$_[1]};

{ WHAT => 'FUNCTIONAL_DRAWABLE',

REF => $ref,

NAME => $_[1],

};

};

The first clause handles the case where the drawable is the name of a sub-
feature of the feature being defined, say top;. In this case we construct

. linogram:               551

the value:

{ WHAT => 'NAMED_DRAWABLE',

NAME => 'top',

}

The other clause handles the case where the drawable is the name of a Perl
function, say &draw_line;. In this case we construct the value:

{ WHAT => 'FUNCTIONAL_DRAWABLE',

NAME => 'draw_line',

REF => \&draw_line,

}

The NAME member here is just for debugging purposes; only the reference is
actually used. Drawables of both types may be mixed in the same draw section.
A draw section like draw { top; &draw_line; } turns into the value:

{ WHAT => 'DRAWABLES',

DRAWABLES => [{ WHAT => 'NAMED_DRAWABLE',

NAME => 'TOP',

},

{ WHAT => 'FUNCTIONAL_DRAWABLE',

NAME => 'draw_line',

REF => \&draw_line,

},

]

}

When a complete type definition has been parsed, several values will be avail-
able: the type name; the name of the parent type, if there is one; and the
list of declarations. The parser function manufactures a new type object from
class Type, and calls add_declarations() to install the declarations into the new
object.

add_declarations() is rather complicated, because it has many different
branches to handle the different kinds of declarations. Each branch individually
is simple, which argues for a dispatch table structure:

my %add_decl = ('DECLARATION' => \&add_subfeature_declaration,

'CONSTRAINTS' => \&add_constraint_declaration,

'DRAWABLES' => \&add_draw_declaration,

552         Declarative Programming

'DEFAULT' => sub {

lino_error("Unknown declaration kind '$[1]{WHAT}'");

},

);

sub add_declarations {

my ($type, @declarations) = @_;

for my $declaration (@declarations) {

my $decl_kind = $declaration->{WHAT};

my $func = $add_decl{$decl_kind} || $add_decl{DEFAULT};

$func->($type, $declaration);

}

}

Sub-feature declarations to Type objects are added by this function, which loops
over the declarators, adding them one at a time:

sub add_subfeature_declaration {

my ($type, $declaration) = @_;

my $declarators = $declaration->{DECLARATORS};

for my $decl (@$declarators) {

my $name = $decl->{NAME};

my $decl_type = $decl->{TYPE};

my $decl_type_obj = $TYPES{$decl_type};

$decl_type is the name of the type of the sub-feature being declared;
$decl_type_obj is the Type object that represents that type. The first thing the
function does is record the name and the type of the new sub-feature:

$type->add_subfeature($name, $decl_type_obj);

Unless the declarator came with parameter specifications, the function is done.
If there were parameter specifications, the function turns them into constraints
and adds them to the type’s list of constraints:

for my $pspec (@{$decl->{PARAM_SPECS}}) {

my $pspec_name = $pspec->{NAME};

my $constraints = convert_param_specs($type, $name, $pspec);

$type->add_constraints($constraints);

}

}

}

. linogram:               553

convert_param_specs() turns the parameter specifications into constraints. We’ll
see this function later, after we’ve discussed the way in which expressions are
turned into constraints.

sub add_constraint_declaration {

my ($type, $declaration) = @_;

my $constraint_expressions = $declaration->{CONSTRAINTS};

my @constraints

= map expression_to_constraints($type, $_),

@$constraint_expressions;

$type->add_constraints(@constraints);

}

This function is invoked to install a constraints block into a type object. The
contents of the constraints block have been turned into Expression objects,
but these objects are still essentially abstract syntax trees, and haven’t yet been
turned into constraints. The function expression_to_constraints() performs
that conversion. add_constraints() then inserts the new constraints into the
type object’s constraint list. We’ll see expression_to_constraints() later, along
with the other functions that deal with expressions.

The third sort of declaration is a draw section, whose contents are
drawables. These are installed into a type object by add_draw_declaration():

sub add_draw_declaration {

my ($type, $declaration) = @_;

my $drawables = $declaration->{DRAWABLES};

for my $d (@$drawables) {

my $drawable_type = $d->{WHAT};

if ($drawable_type eq "NAMED_DRAWABLE") {

unless ($type->has_subfeature($d->{NAME})) {

lino_error("Unknown drawable feature '$d->{NAME}'

}

$type->add_drawable($d->{NAME});

} elsif ($drawable_type eq "FUNCTIONAL_DRAWABLE") {

$type->add_drawable($d->{REF});

} else {

lino_error("Unknown drawable type '$type'");

}

}

}

554         Declarative Programming

There are two branches here, for the two kinds of drawables. One is a functional
drawable, typified by &draw_line; here we insert a reference to the Perl draw_line
function into the drawables list. The other kind of drawable is a named drawable,
which is the name of a sub-feature; here we insert the name into the drawables
list. The only real difference in handling is that we make sure that the name of
a named drawable is already known.

         

The expression parser is similar to the ones we saw in Chapter 8. Its output is
essentially an abstract syntax tree, blessed into the Expression class. Expressions
appear in constraints and on the right-hand sides of parameter specifications. The
grammar is:

$expression = operator($Term,

[_('OP', '+'), sub { Expression->new('+', @_) }],

[_('OP', '-'), sub { Expression->new('-', @_) }],

);

$term = operator($Atom,

[_('OP', '*'), sub { Expression->new('*', @_) }],

[_('OP', '/'), sub { Expression->new('/', @_) }],

);

which is nothing new. Expressions, as mentioned before, are nothing more than
abstract syntax trees. Expression::new() is trivial:

package Expression;

sub new {

my ($base, $op, @args) = @_;

my $class = ref $base || $base;

bless [$op, @args] => $class;

}

. linogram:               555

The $atom parser accepts the usual numbers and parenthesized compound
expressions. But there are a few additional atoms of interest:

package main;

$atom = $Name

| $Tuple

| lookfor("NUMBER", sub { Expression->new('CON', $_[0][1]) })

| _('OP', '-') - $Expression

>> sub { Expression->new('-', Expression->new('CON', 0), $_[1]) }

| _("LPAREN") - $Expression - _("RPAREN") >> sub {$_[1]};

The _('OP', '-') production handles unary minus expressions such as -A; this
is compiled as if it had been written 0-A.

$name is a variable name, possibly a compound variable name containing
dots; it is turned into an expression object containing ['VAR', $varname]:

$name = $Base_name

- star(_("DOT") - _("IDENTIFIER") >> sub { $_[1] })

>> sub { Expression->new('VAR', join(".", $_[0], @{$_[1]})) }

;

$base_name = _"IDENTIFIER";

Similarly, a number is turned into an expression object containing ['CON',

$number]. (CON is an abbreviation for “constant.”)
$tuple is a tuple expression, which we saw before in connection with the

constraint:

plus = F + (hspc, 0);

The (hspc, 0) is a tuple expression. Syntactically, a tuple is a parenthesized,
comma-separated list of expressions. But its parser has some interesting features:

$tuple = _("LPAREN")

- commalist($Expression) / sub { @{$_[0]} > 1 }

- _("RPAREN")

The side condition sub { @{$_[0]} > 1 } requires that the comma-separated
list have more than one value in it. This prevents something like (3) from ever
being parsed as a 1-tuple.

556         Declarative Programming

The value of the tuple expression is generated as follows:

>> sub {

my ($explist) = $_[1];

my $N = @$explist;

my @axis = qw(x y z);

if ($N == 2 || $N == 3) {

return ['TUPLE',

{ map { $axis[$_] => $explist->[$_] } (0 .. $N-1) }

];

} else {

lino_error("$N-tuples are not supported \n");

}

} ;

This does two things. First, it checks to make sure that the tuple has exactly
two or three elements. For two-dimensional diagrams, only 2-tuples make
sense.

3-tuples are supported because linogram might as easily be used for three-
dimensional diagrams. One would have to write another standard library,
including definitions like:

define point { number x, y, z; }

and with replacement drawing functions that understood about perspective. But
once this was done, linogram would handle three-dimensional diagrams as well
as it handles two-dimensional ones. Many of the standard library definitions
would remain exactly the same. For example, the definition of line would
not need to change; a line is determined by its two endpoints, regardless of
whether those endpoints are considered to be points in two or three dimensions.
n-tuples for n larger than three are forbidden until someone thinks of a use
for them.

The value returned from the tuple parser for a tuple such as (5, 12) is:

['TUPLE',

{ x => 5,

y => 12,

}

]

For 3-tuples, there is an additional z member of the hash. The special treatment
of the names x, y, and z comes ultimately from here.

. linogram:               557

The result of parsing an expression, as mentioned before, is an abstract
syntax tree. For the expression x + 2 * y, the tree is:

['+', ['VAR', 'x'],

['*', ['CON', 2],

['VAR', 'y'],

],

]

which should be familiar.
When constraint and parameter declarations are processed, they contain

these raw Expression objects. Later, expressions need to be converted to con-
straints. This is probably the most complicated part of the program. The process
of conversion is essentially evaluation, except that instead of producing a num-
ber result, the result is an object from class Value. This evaluation is performed
by the function expression_to_constraints():

sub expression_to_constraints {

my ($context, $expr) = @_;

Variables in an expression have associated types, and to map from a vari-
able’s name to its type we need a context. To see why, consider the following
example:

define type_A {

number age;

age = 4;

}

define type_B {

box age;

age = 4;

}

The constraint age = 4 in the first definition makes sense, but the same con-
straint in the second definition does not make sense because 4 is not a box.
More generally, the meaning of a constraint might depend in a complex way on
the types of the variables it contains. So expression_to_constraints requires
a context that maps variable names to their types. This is nothing more than
a Type object; the mapping is performed by Type::subfeature().

558         Declarative Programming

Continuing with the evaluation function:

unless (defined $expr) {

Carp::croak("Missing expression in 'expression_to_constraints'");

}

my ($op, @s) = @$expr;

Here we break up the top-level expression into an operator $op and zero or more
subexpressions, @s. We then switch on the operator type. It might be a variable,
a constant, a tuple, or some binary operator such as + or *:

if ($op eq 'VAR') {

my $name = $s[0];

return Value::Feature->new_from_var($name, $context->subfeature($name));

If it’s a variable, we build a new Value::Feature object of the indicated name
and type. new_from_var(), which we saw earlier, is responsible for manufactur-
ing the appropriate set of constraints.

} elsif ($op eq 'CON') {

return Value::Constant->new($s[0]);

If the expression is a constant, the code is simple; we build a Value::Constant

object.
Tuples are where things start to get interesting. As we saw earlier, tuples

are not required to be constants; (hspc + 3, 2 * top.start.y) is a perfectly
legitimate tuple. Since the components of a tuple may be arbitrary expressions,
we call expression_to_constraints() recursively:

} elsif ($op eq 'TUPLE') {

my %components;

for my $k (keys %{$s[0]}) {

$components{$k} = expression_to_constraints($context, $s[0]{$k});

}

return Value::Tuple->new(%components);

}

There should probably be a check here to make sure that the resulting compo-
nent values are not themselves tuples. At present, ((1, 2), (3, 4)), which is
illegal, is not diagnosed until later, when the malformed tuple participates in an
arithmetic operation.

. linogram:               559

If the argument expression was neither a tuple, a variable, nor a constant,
then it’s a compound expression. We start by evaluating the two operands:

my $e1 = expression_to_constraints($context, $s[0]);

my $e2 = expression_to_constraints($context, $s[1]);

We then dispatch an appropriate method to combine the two operands into a
single expression. When the operator is +, we use the add method, and so on:

my %opmeth = ('+' => 'add',

'-' => 'sub',

'*' => 'mul',

'/' => 'div',

);

my $meth = $opmeth{$op};

if (defined $meth) {

return $e1->$meth($e2);

} else {

lino_error("Unknown operator '$op' in AST");

}

}

This is what connects the parser with the arithmetic functions from class Value.
The one important function we haven’t seen is convert_param_specs(),

which takes the parameter specifications in a declaration like hline L(end=Q+R)

and converts them to constraints. The arguments are a context, the sub-feature
type (hline in the example), and a parameter specification value, something like:

{ WHAT => 'PARAM_SPEC',

NAME => 'end',

VALUE => ['+', ['VAR', 'Q'],

['VAR', 'R'],

],

}

The only fine point here is that parameter specifications are asymmetric. The
name end on the left side is interpreted as a sub-feature of L, but the named Q

and R on the right side are interpreted as sub-features of the outer context in
which L is being defined. convert_param_specs() builds a new Value::Feature

object for the left side by making two calls to subfeature(), one to find

560         Declarative Programming

the type of the feature that’s being defined, L in the example, and then one
more to find the type of the parameter name, end in the example. It uses the
expression_to_constraints() function to convert the right-hand side, and then
subtracts right from left to produce the final constraint:

sub convert_param_specs {

my ($context, $subobj, $pspec) = @_;

my @constraints;

my $left = Value::Feature->new_from_var("$subobj." . $pspec->{NAME},

$context->subfeature($subobj)

->subfeature($pspec->{NAME})

);

my $right = expression_to_constraints($context, $pspec->{VALUE});

return $left->sub($right);

}

Our walk through the code is now complete.

9.4.5 Missing Features

linogram is missing a few valuable features. Some are easier to fix than others.
It doesn’t support varying thickness lines, colored lines, or filled boxes. These
are easy to add, and in fact an earlier version of linogram supports them; I took
the feature out for pedagogical reasons. The technical support for the feature was
to allow “parameter” declarations, like this:

define line {

point x, y;

param number thickness = 1;

param string color = "black";

draw { &draw_line; }

}

A parameter is just another sub-feature, except that it doesn’t participate in
the system of linear equations. Like any other sub-feature, it may be constrained
by the root feature or some other feature that includes it. The following root
feature definition draws a vertical black line crossed by a horizontal red line:

vline v;

hline h(color="red");

constraints { v.center = h.center; }

. linogram:               561

The color="red" parameter specification overrides the default of "black". The
parameter values are then included in the environment hash that is passed to the
drawing functions. When draw_line sees that the color is specified as "red" it is
responsible for drawing a red line instead of a black one.

With the parameter feature, we can support the placement of objects that
contain text:

define text extends box {

param string text = "";

param number font_size = 9;

param string font = "courier";

draw { &draw_text }

}

and now we have something that has a top, bottom, left, northwest corner, and
so forth, like a box, but whose four sides are invisible. Instead, the draw_text

function is responsible for placing the text appropriately, or for issuing an error
message if it doesn’t fit.

The value of a parameter must be completely determined before the con-
straint system is solved, either by a declaration like hline h(color="red"), or by
a specified default. If neither is present, it is a fatal error.

Parameters can be used for other applications:

define marked_line extends vline {

hline mark;

param number markpos = 50;

constraints {

mark.length = 0.02;

mark.center = (center.x, start.y + markpos/100 * height);

}

}

This defines a feature that is a vertical line with a horizontal tick mark across
it. By default, the tick mark is halfway up the line, but this depends on the
value of markpos, which can be between 0 and 100 to indicate a percentage of
the way to the end of the vline. If markpos is 100, the tick mark is at the end
of the vline; if markpos is 75, the tick mark is one-quarter of the way from
the end.

If markpos were not a param, the definition would be illegal, because the
expression markpos/100 * height is nonlinear. But parameters do not participate
in linear-equation solving. The rules for parameters say that markpos must be
specified somewhere before the equation solving begins. Suppose it has been

562         Declarative Programming

specified to be 75. Then the constraint is effectively:

mark.center = (center.x, start.y + 75/100 * height);

which is linear. This feature lends a great deal of flexibility to the system.
One major feature that is missing is splines. A spline is a curved line whose

path is determined by one or more control points. The spline wiggles along,
starting at its first control point and heading towards the second, then veering
off toward the third, and so on, until it ends at the last control point. The
main impediment here is that unlike the other features we’ve seen, the number
of control points of a spline isn’t known in advance. We could conceivably get
around this by defining a series of spline types:

define spline2 {

point p1, p2;

draw { &draw_spline; }

}

define spline3 extends spline2 {

point p3;

}

define spline4 extends spline3 {

point p4;

}

...

but this is awfully clumsy. What linogram really needs to support features like
splines and polygons is a way to specify a parametrizable array of features and
their associated constraints, perhaps something like this:

define polygon(N) {

point v[N];

line s[N];

constraints {

when j is 1 .. N { s[j].start = v[j]; }

when j is 1 .. N-1 { s[j].end = v[j+1]; }

s[N].end = v[1];

}

}

.           563

There are a few missing syntactic features. A declaration like:

number hsize = 12;

would be convenient, as would equations with multiple equals signs:

A.sw = B.n = C.s;

9.5  

linogram is a substantial application, one that might even be useful. I have
been using the venerable pic system, developed at Bell Labs, for years, and it
convinced me that defining diagrams by writing a text file of constraints is a good
general strategy. But I’ve never been entirely happy with pic, and I wanted to
see what else I could come up with.

I also wanted to finish the book with a serious example that would demon-
strate how the techniques we’ve studied could be integrated into real Perl
programs. linogram totals about 1,300 lines of code, counting the parsing
system we developed in Chapter 8, but not counting comments, whitespace,
curly braces, and the like. It would have been very difficult to build without
the techniques of earlier chapters. The parsing system itself was essential; the
clean design of the parsing system depends heavily on the earlier work on lazy
streams and iterators. We used recursion and dispatch tables throughout to reduce
and reorganize the code. Although the program doesn’t use any explicit curry-
ing or memoization, there are several places where the code would probably
be improved by its introduction — the functions based on apply(), and the
subfeature() function spring to mind.

